×

An interface-tracking space-time hybridizable/embedded discontinuous Galerkin method for nonlinear free-surface flows. (English) Zbl 1521.76368

Summary: We present a compatible space-time hybridizable/embedded discontinuous Galerkin discretization for nonlinear free-surface waves. We pose this problem in a two-fluid (liquid and gas) domain and use a time-dependent level-set function to identify the sharp interface between the two fluids. The incompressible two-fluid equations are discretized by an exactly mass conserving space-time hybridizable discontinuous Galerkin method while the level-set equation is discretized by a space-time embedded discontinuous Galerkin method. Different from alternative discontinuous Galerkin methods is that the embedded discontinuous Galerkin method results in a continuous approximation of the interface. This, in combination with the space-time framework, results in an interface-tracking method without resorting to smoothing techniques or additional mesh stabilization terms.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76-10 Mathematical modeling or simulation for problems pertaining to fluid mechanics

References:

[1] Kirby, R. M.; Sherwin, S. J.; Cockburn, B., To CG or to HDG: A comparative study, J Sci Comput, 51, 1, 183-212 (2012) · Zbl 1244.65174
[2] Yakovlev, S.; Moxey, D.; Kirby, R. M.; Sherwin, S. J., To CG or to HDG: A comparative study in 3D, J Sci Comput, 67, 1, 192-220 (2016) · Zbl 1339.65225
[3] Cockburn, B.; Gopalakrishnan, J.; Lazarov, R., Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J Numer Anal, 47, 1319-1365 (2009) · Zbl 1205.65312
[4] Fu, G., An explicit divergence-free DG method for incompressible flow, Comput Methods Appl Mech Engrg, 345, 502-517 (2019) · Zbl 1440.76060
[5] Lehrenfeld, C.; Schöberl, J., High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows, Comput Methods Appl Mech Engrg, 307, 339-361 (2016) · Zbl 1439.76081
[6] Rhebergen, S.; Wells, G. N., A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field, J Sci Comput, 76, 3, 1484-1501 (2018) · Zbl 1397.76077
[7] Cockburn, B.; Guzmán, J.; Soon, S.-C.; Stolarski, H. K., An analysis of the embedded discontinuous Galerkin method for second-order elliptic problems, SIAM J Numer Anal, 47, 2686-2707 (2009) · Zbl 1211.65153
[8] Güzey, S.; Cockburn, B.; Stolarski, H., The embedded discontinuous Galerkin methods: Application to linear shells problems, Internat J Numer Methods Engrg, 70, 757-790 (2007) · Zbl 1194.74403
[9] Rhebergen, S.; Wells, G. N., An embedded-hybridized discontinuous Galerkin finite element method for the Stokes equations, Comput Methods Appl Mech Engrg, 367 (2020) · Zbl 1441.76072
[10] Osher, S.; Sethian, J. A., Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J Comput Phys, 79, 12-49 (1988) · Zbl 0659.65132
[11] Chang, Y. C.; Hou, T. Y.; Merriman, B.; Osher, S., A level set formulation of Eulerian interface capturing methods for incompressible fluid flows, J Comput Phys, 124, 449-464 (1996) · Zbl 0847.76048
[12] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J Comput Phys, 114, 146-159 (1994) · Zbl 0808.76077
[13] Grooss, J.; Hesthaven, J. S., A level set discontinuous Galerkin method for free surface flows, Comput Methods Appl Mech Engrg, 195, 3406-3429 (2006) · Zbl 1121.76035
[14] Lin, C.; Lee, H.; Lee, T.; Weber, L. J., A level set characteristic Galerkin finite element method for free surface flows, Internat J Numer Methods Fluids, 49, 521-547 (2005) · Zbl 1185.76814
[15] Marchandise, E.; Remacle, J.-F., A stabilized finite element method using a discontinuous level set approach for solving two phase incompressible flows, J Comput Phys, 219, 780-800 (2006) · Zbl 1189.76343
[16] Tezduyar, T., Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces, Comput Methods Appl Mech Engrg, 195, 23, 2983-3000 (2006) · Zbl 1176.76076
[17] Labeur, R. J.; Wells, G. N., Interface stabilised finite element method for moving domains and free surface flows, Comput Methods Appl Mech Engrg, 198, 615-630 (2009) · Zbl 1229.76050
[18] Fu, G., Arbitrary Lagrangian-Eulerian hybridizable discontinuous Galerkin methods for incompressible flow with moving boundaries and interfaces, Comput Methods Appl Mech Engrg, 367 (2020) · Zbl 1442.76066
[19] Neunteufel, M.; Schöberl, J., Fluid-structure interaction with h(div)-conforming finite elements (2020), arXiv preprint arXiv:2005.06360
[20] Lesoinne, M.; Farhat, C., Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations, Comput Methods Appl Mech Engrg, 134, 71-90 (1996) · Zbl 0896.76044
[21] van der Vegt, J. J.W.; Sudirham, J. J., A space-time discontinuous Galerkin method for the time-dependent oseen equations, Appl Numer Math, 58, 1892-1917 (2008) · Zbl 1148.76035
[22] Hughes, T. J.R.; Hulbert, G. M., Space-time finite element methods for elastodynamics: Formulations and error estimates, Comput Methods Appl Mech Engrg, 66, 3, 339-363 (1988) · Zbl 0616.73063
[23] Masud, A.; Hughes, T., A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems, Comput Methods Appl Mech Engrg, 146, 1-2, 91-126 (1997) · Zbl 0899.76259
[24] N’dri, D.; Garon, A.; Fortin, A., A new stable space-time formulation for two-dimensional and three-dimensional incompressible viscous flow, Internat J Numer Methods Fluids, 37, 8, 865-884 (2001) · Zbl 0996.76051
[25] Zanotti, O.; Fambri, F.; Dumbser, M.; Hidalgo, A., Space-time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori sub-cell finite volume limiting, Comput Fluids, 118, 204-224 (2015) · Zbl 1390.76381
[26] Tezduyar, T. E.; Behr, M.; Mittal, S.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders, Comput Methods Appl Mech Engrg, 94, 3, 353-371 (1992) · Zbl 0745.76045
[27] Güler, I.; Behr, M.; Tezduyar, T., Parallel finite element computation of free-surface flows, Comput Mech, 23, 117-123 (1999) · Zbl 0948.76039
[28] Horvath, T. L.; Rhebergen, S., A locally conservative and energy-stable finite element method for the Navier-Stokes problem on time-dependent domains, Internat J Numer Methods Fluids, 89, 12, 519-532 (2019)
[29] Horvath, T. L.; Rhebergen, S., An exactly mass conserving space-time embedded-hybridized discontinuous Galerkin method for the Navier-Stokes equations on moving domains, J Comput Phys, 417 (2020) · Zbl 1437.76021
[30] Aizinger, V.; Dawson, C., The local discontinuous Galerkin method for three-dimensional shallow water flow, Comput Methods Appl Mech Engrg, 196, 734-746 (2006) · Zbl 1120.76320
[31] Dawson, C.; Sun, S.; Wheeler, M. F., Compatible algorithms for coupled flow and transport, Comput Methods Appl Mech Engrg, 193, 23-26, 2565-2580 (2004) · Zbl 1067.76565
[32] van der Vegt, J. J.W.; van der Ven, H., Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows. I. General formulation, J Comput Phys, 182, 546-585 (2002) · Zbl 1057.76553
[33] Wells, G. N., Analysis of an interface stabilized finite element method: the advection-diffusion-reaction equation, SIAM J Numer Anal, 49, 1, 87-109 (2011) · Zbl 1226.65097
[34] Cesmelioglu, A.; Rhebergen, S., A compatible embedded-hybridized discontinuous Galerkin method for the Stokes-Darcy-transport problem, Commun Appl Math Comput (2021) · Zbl 1499.65647
[35] Gagarina, E.; Ambati, V. R.; van der Vegt, J. J.W.; Bokhove, O., Variational space-time (dis)continuous Galerkin method for nonlinear free surface water waves, J Comput Phys, 275, 459-483 (2014) · Zbl 1349.76204
[36] van der Vegt, J. J.W.; Xu, Y., Space-time discontinuous Galerkin method for nonlinear water waves, J Comput Phys, 224, 17-39 (2007) · Zbl 1117.76038
[37] Dobrev, V. A.; Kolev, T. V., MFEM: Modular finite element methods (2020), http://mfem.org
[38] Rivière, B., (Discontinuous Galerkin methods for solving elliptic and parabolic equations. Discontinuous Galerkin methods for solving elliptic and parabolic equations, Frontiers in applied mathematics, vol. 35 (2008), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia) · Zbl 1153.65112
[39] Kirk, K. L.A.; Rhebergen, S., Analysis of a pressure-robust hybridized discontinuous Galerkin method for the stationary Navier-Stokes equations, J Sci Comput, 81, 881-897 (2019) · Zbl 1423.76247
[40] Huynh, L. N.T.; Nguyen, N. C.; Peraire, J.; Khoo, B. C., A high-order hybridizable discontinuous Galerkin method for elliptic interface problems, Internat J Numer Methods Engrg, 93, 2, 183-200 (2013) · Zbl 1352.65513
[41] Wang, B.; Khoo, B. C., Hybridizable discontinuous Galerkin method (HDG) for Stokes interface flow, J Comput Phys, 247, 262-278 (2013) · Zbl 1349.76075
[42] Wu, G. X.; Taylor, R. E.; Greaves, D. M., The effect of viscosity on the transient free-surface waves in a two-dimensional tank, J Eng Math, 40, 77-90 (2001) · Zbl 1006.76026
[43] Tzabiras, G. D., A numerical investigation of 2D, steady free surface flows, Internat J Numer Methods Fluids, 25, 5, 567-598 (1997) · Zbl 0890.76065
[44] Demeester, T.; van Brummelen, E. H.; Degroote, J., An efficient quasi-Newton method for two-dimensional steady free surface flow, Internat J Numer Methods Fluids, 92, 7, 785-801 (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.