×

The Navier-Stokes equations under a unilateral boundary condition of Signorini’s type. (English) Zbl 1346.35119

Summary: We propose a new outflow boundary condition, a unilateral condition of Signorini’s type, for the incompressible Navier-Stokes equations. The condition is a generalization of the standard free-traction condition. Its variational formulation is given by a variational inequality. We also consider a penalty approximation, a kind of the Robin condition, to deduce a suitable formulation for numerical computations. Under those conditions, we can obtain energy inequalities that are key features for numerical computations. The main contribution of this paper is to establish the well-posedness of the Navier-Stokes equations under those boundary conditions. Particularly, we prove the unique existence of strong solutions of Ladyzhenskaya’s class using the standard Galerkin’s method. For the proof of the existence of pressures, however, we offer a new method of analysis.

MSC:

35K85 Unilateral problems for linear parabolic equations and variational inequalities with linear parabolic operators
35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI

References:

[1] Boyer F., Fabrie P.: Outflow boundary conditions for the incompressible non-homogeneous Navier-Stokes equations. Discrete Contin. Dyn. Syst. Ser. B 7, 219-250 (2007) · Zbl 1388.76046
[2] Boyer F., Fabrie P.: Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations on Related Models. Springer, Berlin (2012) · Zbl 1286.76005
[3] Bruneau C.H., Fabrie P.: Effective downstream boundary conditions for incompressible NavierStokes equations. Int. J. Numer. Methods Fluids 19, 693-705 (1994) · Zbl 0816.76024 · doi:10.1002/fld.1650190805
[4] Bruneau C.H., Fabrie P.: New efficient boundary conditions for incompressible Navier-Stokes equations: a well-posedness result. RAIRO Modél. Math. Anal. Numér. 30, 815-840 (1996) · Zbl 0865.76016
[5] Bazilevs Y., Gohean J.R., Hughes T.J.R., Moser R.D., Zhang Y.: Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput. Methods Appl. Mech. Eng. 198, 3534-3550 (2009) · Zbl 1229.74096 · doi:10.1016/j.cma.2009.04.015
[6] Bothe D., Köhne M., Prüss J.: On a class of energy preserving boundary conditions for incompressible newtonian flows. SIAM J. Math. Anal. 45, 3768-3822 (2013) · Zbl 1286.35191 · doi:10.1137/120870670
[7] Duvaut G., Lions J.L.: Les Inéquations en Méchanique et en Physique. Dunod, Paris (1972) · Zbl 0298.73001
[8] Formaggia, L., Quarteroni, A., Veneziani, A., (eds).: Cardiovascular Mathematics. Springer, Berlin (2009) · Zbl 1300.92005
[9] Formaggia L., Gerbeau J.F., Nobile F., Quarteroni A.: Numerical treatment of defective boundary conditions for the Navier-Stokes equations. SIAM J. Numer. Anal. 40, 376-401 (2002) · Zbl 1020.35070 · doi:10.1137/S003614290038296X
[10] Gresho, P.M., Sani, R.L.: Incompressible Flow and the Finite Element Method, Volume 2, Isothermal Laminar Flow. Wiley, New York (2000) · Zbl 0988.76005
[11] Grisvard, P.: Behavior of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain, Numerical Solution of P.D.E’s III (Proc. Third Sympos. (SYNSPADE), Univ. Maryland, College Park, Md., 1975), pp. 207-274, Academic Press (1976) · Zbl 1286.35191
[12] Heywood J.G., Rannacher R., Turek S.: Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 22, 325-352 (1996) · Zbl 0863.76016 · doi:10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y
[13] Kashiwabara T.: On a strong solution of the non-stationary Navier-Stokes equations under slip or leak boundary conditions of friction type. J. Differ. Equ. 254, 756-778 (2013) · Zbl 1253.35102 · doi:10.1016/j.jde.2012.09.015
[14] Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity. SIAM, Philadelphia (1988) · Zbl 0685.73002
[15] Ladyzhenskaya O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach Sci. Publ., London (1969) · Zbl 0184.52603
[16] Lions J.L., Magenes E.: Non-homogeneous Boundary Value Problems and Applications, I. Springer, Berlin (1972) · Zbl 0223.35039 · doi:10.1007/978-3-642-65161-8
[17] Labeur R.J., Wells G.N.: Energy stable and momentum conserving hybrid finite element method for the incompressible Navier-Stokes equations. SIAM J. Sci. Comput. 34, 889-913 (2012) · Zbl 1391.76344 · doi:10.1137/100818583
[18] Nečas J.: Direct Methods in the Theory of Elliptic Equations. Springer, Berlin (2011)
[19] Saito, N., Sugitani, Y., Zhou, G.: Energy inequalities and outflow boundary conditions for the Navier-Stokes equations. To appear in Advances in Computational Fluid-Structure, Birkhauser · Zbl 1356.76048
[20] Saito, N., Sugitani, Y., Zhou, G.: Unilateral problem for the Stokes equations: the well-posednes and finite element approximation. UTMS Preprint Series, UTMS 2015-3. http://www.ms.u-tokyo.ac.jp/preprint_e/2015/ · Zbl 1381.76201
[21] Sohr H.: The Navier-Stokes Equations: An Elementary Functional Analytic Approach. Birkhäuser, Basel (2001) · Zbl 0983.35004 · doi:10.1007/978-3-0348-0551-3
[22] Taylor C.A., Hughes T.J., Zarins C.K.: Finite element modeling of blood flow in arteries. Comput. Methods Appl. Mech. Eng. 158, 155-196 (1998) · Zbl 0953.76058 · doi:10.1016/S0045-7825(98)80008-X
[23] Takizawa, K.: Private communication · Zbl 1196.91015
[24] Temam R.: Navier-Stokes Equations. Theory and Numerical Analysis. AMS Chelsea Publishing, Providence (2001) · Zbl 0981.35001
[25] Uchikawa, H., Sasaki, T., Takizawa, K., Tezduyar, T., Saito, N.: Modelling of the outlet BC in aorta fluid mechanics computation with the space-time isogeometric analysis. Presentation at CFD2015: The 28th Symposium on Computational Fluid Dynamics, Kyushu University, Fukuoka, Japan (2015)
[26] Vignon-Clementel I.E., Figueroa C.A., Jansenc K.E., Taylor C.A.: Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 195, 3776-3796 (2006) · Zbl 1175.76098 · doi:10.1016/j.cma.2005.04.014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.