×

A second-order in time and space particle-based method to solve flow problems on arbitrary meshes. (English) Zbl 1451.76091

Summary: This work presents a novel proposal of a second-order accurate (in time and space) particle-based method for solving transport equations including incompressible flows problems within a mixed Lagrangian-Eulerian formulation. This methodology consists of a symmetrical operator splitting, the use of high-order operators to transfer data between the particles and the background mesh, and an improved version of the eXplicit Integration Following the Streamlines (X-IVS) method. In the case of incompressible flows, a large time-step iterative solver is employed where the momentum equation is split to improve the numerical approximation of the convective term. New interpolation and projection operators are evaluated and quadratically accurate solutions of scalar transport tests are presented. Then, incompressible flow problems are solved where the rate of convergence of the method is assessed using both structured and unstructured background grids. The method is implemented in the open source platform OpenFOAM\(^{{\circledR}}\) allowing employing arbitrary meshes and obtaining reliable computing time comparisons with standardized solvers. The results obtained reveal that the current method is able to obtain a lower level of error than a fast Eulerian alternative, without increasing the total computing time.

MSC:

76M28 Particle methods and lattice-gas methods
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
76M12 Finite volume methods applied to problems in fluid mechanics

Software:

OpenFOAM
Full Text: DOI

References:

[1] Donea, J.; Huerta, A., Finite Element Method for Flow Problems (2003), Wiley: Wiley Chichester, England
[2] Monaghan, J., An introduction to SPH, Comput. Phys. Commun., 48, 89-96 (1988) · Zbl 0673.76089
[3] Koshizuka, S.; Oka, Y., Moving-particle semi-implicit method for fragmentation of incompressible fluid, Nucl. Sci. Eng., 123, 3, 421-434 (1996)
[4] Nestor, R. M.; Basa, M.; Lastiwka, M.; Quinlan, N. J., Extension of the finite volume particle method to viscous flow, J. Comput. Phys., 228, 5, 1733-1749 (2009) · Zbl 1409.76078
[5] Ihmsen, M.; Cornelis, J.; Solenthaler, B.; Horvath, C.; Teschner, M., Implicit incompressible SPH, IEEE Trans. Vis. Comput. Graph., 20, 3, 426-435 (2014)
[6] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: an overview and recent developments, Comput. Methods Appl. Mech. Eng., 139, 1, 3-47 (1996) · Zbl 0891.73075
[7] Harlow, F. H., Pic and its progeny, Comput. Phys. Commun., 48, 1, 1-10 (1988)
[8] Idelsohn, S.; Oñate, E.; Calvo, N.; Del Pin, F., The meshless finite element method, Int. J. Numer. Methods Eng., 58, 6, 893-912 (2003) · Zbl 1035.65129
[9] Hwang, Y.-H., A moving particle method with embedded pressure mesh (mppm) for incompressible flow calculations, Numer. Heat Transf., Part B, Fundam., 60, 5, 370-398 (2011)
[10] Idelsohn, S.; Oñate, E.; Del Pin, F., The particle finite element method a powerful tool to solve incompressible flows with free-surfaces and breaking waves, Int. J. Numer. Methods, 61, 964-989 (2004) · Zbl 1075.76576
[11] Idelsohn, S.; Nigro, N.; Limache, A.; Oñate, E., Large time-step explicit integration method for solving problems with dominant convection, Comput. Methods Appl. Mech. Eng., 217-220, 168-185 (2012) · Zbl 1253.76120
[12] Idelsohn, S.; Nigro, N.; Gimenez, J.; Rossi, R.; Marti, J., A fast and accurate method to solve the incompressible Navier-Stokes equations, Eng. Comput., 30, 2, 197-222 (2013)
[13] Stam, J., Stable fluids, (Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques. Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’99 (1999), ACM Press/Addison-Wesley Publishing Co.: ACM Press/Addison-Wesley Publishing Co. New York, NY, USA), 121-128
[14] Allievi, A.; Bermejo, R., Finite element modified method of characteristics for Navier-Stokes equations, Int. J. Numer. Methods Fluids, 32, 439-464 (2000) · Zbl 0955.76048
[15] Gimenez, J., Enlarging Time Steps for Solving One and Two Phase Flows Using the Particle Finite Element Method (2015), Facultad de Ingeniería y Ciencias Hídricas - Centro de Investigaciones en Mecanica Computacional: Facultad de Ingeniería y Ciencias Hídricas - Centro de Investigaciones en Mecanica Computacional Santa Fe, Argentina, Ph.D. Thesis
[16] Liu, K.-S.; Sheu, T. W.-H.; Hwang, Y.-H.; Ng, K.-C., High-order particle method for solving incompressible Navier-Stokes equations within a mixed Lagrangian-Eulerian framework, Comput. Methods Appl. Mech. Eng., 325, 77-101 (2017) · Zbl 1439.76019
[17] Perot, J., An analysis of the fractional step method, J. Comput. Phys., 108, 1, 51-58 (1993) · Zbl 0778.76064
[18] Issa, R., Solution of the implicitly discretised fluid flow equations by operator-splitting, J. Comput. Phys., 62, 1, 40-65 (1986) · Zbl 0619.76024
[19] Maljaars, J. M.; Labeur, R. J.; Möller, M., A hybridized discontinuous Galerkin framework for high-order particle-mesh operator splitting of the incompressible Navier-Stokes equations, J. Comput. Phys., 358, 150-172 (2018) · Zbl 1381.76190
[20] Strang, G., On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 3, 506-517 (1968) · Zbl 0184.38503
[21] Caretto, L. S.; Gosman, A. D.; Patankar, S. V.; Spalding, D. B., Two calculation procedures for steady, three-dimensional flows with recirculation, (Cabannes, H.; Temam, R., Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics (1973), Springer: Springer Berlin, Heidelberg), 60-68 · Zbl 0255.76031
[22] Gatin, I.; Vukčević, V.; Jasak, H.; Rusche, H., Enhanced coupling of solid body motion and fluid flow in finite volume framework, Ocean Eng., 143, 295-304 (2017)
[23] Weller, H. G.; Tabor, G.; Jasak, H.; Fureby, C., A tensorial approach to computational continuum mechanics using object-oriented techniques, Comput. Phys., 12, 6, 620-631 (1998)
[24] Jasak, H., Error Analysis and Estimation for Finite Volume Method with Applications to Fluid Flow (1996), Imperial College of Science, Technology and Medicine, Ph.D. Thesis
[25] LeVeque, R., Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics (2002), Cambridge University Press · Zbl 1010.65040
[26] MacNamara, S.; Strang, G., Operator splitting, (Glowinski, R.; Osher, S.; Yin, W., Splitting Methods in Communication, Imaging, Science, and Engineering (2017), Springer)
[27] Idelsohn, S.; Oñate, E.; Nigro, N.; Becker, P.; Gimenez, J., Lagrangian versus Eulerian integration errors, Comput. Methods Appl. Mech. Eng., 293, 191-206 (2015) · Zbl 1423.76241
[28] Sigalotti, L. D.G.; Klapp, J.; Rendón, O.; Vargas, C. A.; Peña-Polo, F., On the kernel and particle consistency in smoothed particle hydrodynamics, Appl. Numer. Math., 108, Supplement C, 242-255 (2016) · Zbl 1381.76280
[29] Sarra, S.; Kanse, E., Multiquadric radial basis function approximation methods for the numerical solution of partial differential equations, (Atluri, S., Advances in Computational Mechanics, vol. 2 (2009), Tech Science Press)
[30] Fornberg, B.; Driscoll, T.; Wright, G.; Charles, R., Observations on the behavior of radial basis function approximations near boundaries, Comput. Math. Appl., 43, 3, 473-490 (2002) · Zbl 0999.65005
[31] Wang, Z.; Fidkowski, K.; Abgrall, R.; Bassi, F.; Caraeni, D.; Cary, A.; Deconinck, H.; Hartmann, R.; Hillewaert, K.; Huynh, H.; Kroll, N.; May, G.; Persson, P.; Leer, B.; Visbal, M., High-order CFD methods: current status and perspective, Int. J. Numer. Methods Fluids, 72, 8, 811-845 (2013) · Zbl 1455.76007
[32] Gimenez, J.; González, L., An extended validation of the last generation of particle finite element method for free surface flows, J. Comput. Phys., 284, 186-205 (2015) · Zbl 1351.76059
[33] Nadukandi, P.; Servan-Camas, B.; Becker, P. A.; Garcia-Espinosa, J., Seakeeping with the semi-Lagrangian particle finite element method, Comput. Part. Mech., 4, 3, 321-329 (2017)
[34] Nadukandi, P., Numerically stable formulas for a particle-based explicit exponential integrator, Comput. Mech., 55, 5, 903-920 (2015) · Zbl 1317.65002
[35] Löhner, R.; Ambrosiano, J., A vectorized particle tracer for unstructured grids, J. Comput. Phys., 91, 1, 22-31 (1990) · Zbl 0718.65076
[36] Wang, G.; Duchaine, F.; Papadogiannis, D.; Duran, I.; Moreau, S.; Gicquel, L. Y., An overset grid method for large eddy simulation of turbomachinery stages, J. Comput. Phys., 274, 333-355 (2014) · Zbl 1351.76039
[37] Aguerre, H.; Damián, S. M.; Gimenez, J.; Nigro, N., Conservative handling of arbitrary non-conformal interfaces using an efficient supermesh, J. Comput. Phys., 335, 21-49 (2017) · Zbl 1375.76095
[38] Taylor, G.; Green, A., Mechanism of the production of small eddies from large ones, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 158, 895, 499-521 (1937) · JFM 63.1358.03
[39] Gimenez, J.; Nigro, N.; Idelsohn, S., Evaluating the performance of the particle finite element method in parallel architectures, Comput. Part. Mech., 1, 1, 103-116 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.