×

Lorentz violation in the linearized gravity. (English) Zbl 1248.83020

Summary: We study some physical consequences of the introduction of a Lorentz-violating modification term in the linearized gravity, which leads to modified dispersion relations for gravitational waves in the vacuum. We discuss two possible mechanisms for the induction of such a term in the Lagrangian. First, it is generated at the quantum level by a Lorentz-breaking coupling of the gravity field to a spinor field. Second, it appears as consequence of a particular modification of the Poisson algebra of the canonical variables, in the spirit of the so-called “noncommutative fields approach”.

MSC:

83C25 Approximation procedures, weak fields in general relativity and gravitational theory
81V17 Gravitational interaction in quantum theory

References:

[1] Mead, C. A., Phys. Rev., 135, B849 (1964)
[2] Doplicher, S.; Fredenhagen, K.; Roberts, J. E., Commun. Math. Phys., 172, 187 (1995) · Zbl 0847.53051
[3] Snyder, H., Phys. Rev., 71, 38 (1947) · Zbl 0035.13101
[4] Mattingly, D., Living Rev. Rel., 8, 5 (2005) · Zbl 1255.83059
[5] Coleman, S. R.; Glashow, S. L., Phys. Rev. D, 59, 116008 (1999)
[6] Magueijo, J.; Smolin, L., Class. Quantum Grav., 21, 1725 (2004) · Zbl 1051.83004
[7] Colladay, D.; Kostelecky, V. A., Phys. Rev. D, 58, 116002 (1998)
[8] Kostelecky, V. A.
[9] Bailey, Q. G.; Kostelecky, V. A., Phys. Rev. D, 74, 045001 (2006)
[10] Mariz, T.; Nascimento, J. R.; Passos, E.; Ribeiro, R. F., Phys. Rev. D, 70, 024014 (2004)
[11] Mariz, T.; Nascimento, J. R.; Rivelles, V. O., Phys. Rev. D, 75, 025020 (2007)
[12] Veltman, M., Methods in field theory, (Quantum Theory of Gravitation. Quantum Theory of Gravitation, Les Houches, vol. XXVIII (1976), North-Holland), 265-327
[13] Deser, S.; Jackiw, R.; Templeton, S., Ann. Phys., 281, 409 (2000)
[14] Gitman, D. M.; Tyutin, I. V., Quantization of Fields with Constraints (1990), Springer: Springer Berlin, Heidelberg · Zbl 1028.83011
[15] Ruegg, H.; Ruiz-Altaba, M., Int. J. Mod. Phys. A, 19, 3265 (2004) · Zbl 1080.81041
[16] Porrati, M., Phys. Lett. B, 534, 209 (2002) · Zbl 0994.83042
[17] Jackiw, R.; Pi, S. Y., Phys. Rev. D, 68, 104012 (2003)
[18] Jackiw, R., Nucl. Phys. B (Proc. Suppl.), 108, 30 (2002) · Zbl 1080.81615
[19] Cai, Y.f.; Piao, Y. S.
[20] Sheikh-Jabbari, M. M., Phys. Rev. Lett., 84, 5265 (2000)
[21] Filk, T., Phys. Lett. B, 376, 53 (1996) · Zbl 1190.81096
[22] Charneski, B.; Ferrari, A. F.; Gomes, M., J. Phys. A, 40, 3633 (2006)
[23] Morita, K., Prog. Theor. Phys., 108, 1099 (2003)
[24] Harikumar, E.; Rivelles, V. O., Class. Quantum Grav., 23, 7551 (2006) · Zbl 1133.83370
[25] Brandt, F. T.; Elias-Filho, M. R., Phys. Rev. D, 74, 067704 (2006)
[26] Gamboa, J.; Lopez-Sarrion, J., Phys. Rev. D, 71, 067702 (2005)
[27] Falomir, H.; Gamboa, J.; Lopez-Sarrion, J.; Mendez, F.; da Silva, A. J., Phys. Rev. D, 74, 047701 (2006)
[28] Arnowitt, R.; Deser, S.; Misner, C. W., The dynamics of general relativity, (Witten, L., Gravitation: An Introduction to Current Research (1962), Wiley), 227-265, (Chapter 7) · Zbl 0098.19103
[29] Kiriushcheva, N.; Kuzmin, S. V.; McKeon, D. G.C., Mod. Phys. Lett. A, 20, 1961 (2005) · Zbl 1073.83014
[30] Ghalati, R. N.
[31] Nascimento, J. R.; Petrov, A. Yu.; Ribeiro, R. F., Europhys. Lett., 77, 51001 (2007)
[32] Dvali, G.; Jackiw, R.; Pi, S. Y., Phys. Rev. Lett., 96, 081602 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.