×

Finite-size scaling in unbiased translocation dynamics. (English) Zbl 1456.82760

Summary: Finite-size scaling arguments naturally lead to the introduction of a coordinate-dependent diffusion coefficient in a Fokker-Planck description of the late-stage dynamics of unbiased polymer translocation through a membrane pore. The solution for the probability density function of the chemical coordinate matches the initial-stage subdiffusive regime and takes into account the equilibrium entropic drive. We find precise scaling relations connecting the subdiffusion exponent to the divergence with the polymer length of the translocation time, and also to the singularity of the probability density function at the absorbing boundaries. Quantitative comparisons with numerical simulation data in \(d = 2\) strongly support the validity of the model and of the predicted scalings.

MSC:

82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
82D60 Statistical mechanics of polymers

Software:

GSL

References:

[1] Kasianowicz J J, Brandin E, Branton D and Deamer D W 1996 Proc. Nat. Acad. Sci. USA93 13770 · doi:10.1073/pnas.93.24.13770
[2] Meller A, Nivon L and Branton D 2001 Phys. Rev. Lett.86 3435 · doi:10.1103/PhysRevLett.86.3435
[3] Dekker C 2007 Nature Nanotechnol.2 209 · doi:10.1038/nnano.2007.27
[4] Sung W and Park P 1996 Phys. Rev. Lett.77 783 · doi:10.1103/PhysRevLett.77.783
[5] Muthukumar M 1999 J. Chem. Phys.111 10371 · doi:10.1063/1.480386
[6] Chuang J, Kantor Y and Kardar M 2001 Phys. Rev. E 65 011802 · doi:10.1103/PhysRevE.65.011802
[7] Metzler R and Klafter J 2003 Biophys. J.85 2776 · doi:10.1016/S0006-3495(03)74699-2
[8] Ali I and Yeomans J M 2005 J. Chem. Phys.123 234903 · doi:10.1063/1.2138702
[9] Wolterink J, Barkema G and Panja D 2006 Phys. Rev. Lett.96 208301 · doi:10.1103/PhysRevLett.96.208301
[10] Panja D, Barkema G and Ball R 2007 J. Phys.: Condens. Matter19 432202 · doi:10.1088/0953-8984/19/43/432202
[11] Dubbeldam J, Milchev A, Rostiashvili V and Vilgis T 2007 Phys. Rev. E 76 010801 · doi:10.1103/PhysRevE.76.010801
[12] Chatelain C, Kantor Y and Kardar M 2008 Phys. Rev. E 78 021129 · doi:10.1103/PhysRevE.78.021129
[13] Luo K, Ollila S, Huopaniemi I, Ala-Nissila T, Pomorski P, Karttunen M, Ying S and and Bhattacharya A 2008 Phys. Rev. E 78 050901 · doi:10.1103/PhysRevE.78.050901
[14] Zoia A, Rosso A and Majumdar S 2009 Phys. Rev. Lett.102 120602 · doi:10.1103/PhysRevLett.102.120602
[15] Panja D et al 2010 J. Chem. Phys.132 14902 · doi:10.1063/1.3281641
[16] de Haan H and Slater G 2012 J. Chem. Phys.136 204902 · doi:10.1063/1.4711865
[17] Nienhuis B 1982 Phys. Rev. Lett.49 1062 · doi:10.1103/PhysRevLett.49.1062
[18] Vanderzande C 1998 Lattice Models of Polymers (Cambridge: Cambridge University Press) · Zbl 0922.76004 · doi:10.1017/CBO9780511563935
[19] Li B, Madras N and Sokal A 1995 J. Stat. Phys.80 661 · Zbl 1114.82303 · doi:10.1007/BF02178552
[20] Duplantier B and Saleur H 1986 Phys. Rev. Lett.57 3179 · doi:10.1103/PhysRevLett.57.3179
[21] Galassi M, Davies J, Theiler J, Gough B, Jungman G, Alken P, Booth M and Rossi F 2009 GNU Scientific Library Reference Manual-(v1.12) (Bristol: Network Theory Ltd)
[22] Amitai A, Kantor Y and Kardar M 2010 Phys. Rev. E 81 011107 · doi:10.1103/PhysRevE.81.011107
[23] Kusse B and Westwig E 2006 Mathematical Physics (New York: Wiley-VCH) · Zbl 1138.00003 · doi:10.1002/9783527618132
[24] Risken H 1989 The Fokker-Planck Equation (Berlin: Springer) · Zbl 0665.60084 · doi:10.1007/978-3-642-61544-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.