×

A BEM broadband topology optimization strategy based on Taylor expansion and SOAR method – application to 2D acoustic scattering problems. (English) Zbl 1533.74064

Summary: In this article, an innovative method is proposed for broadband topology optimization of sound-absorbing materials adhering to the surface of a sound barrier structure. Helmholtz equation for the acoustic problems is solved using the boundary element method, while sensitivities of the objective function with respect to a large number of design variables are calculated via a sensitivity analysis method originated from the adjoint variable method (AVM), and the optimal solution is obtained by the method of moving asymptotes (MMA). Since the traditional single-frequency topology optimization is frequency dependent, that is, the optimal solution at a certain frequency may not be optimal at other frequencies, broadband topology optimization of sound-absorbing materials is conducted in this work. To address the problem of tremendous computational cost due to repetitive calculations at each discrete frequency point during broadband optimization, Taylor expansion of the Hankel function is performed to decouple the frequency dependent and independent terms in the BEM equations. For large-scale problems, a reduced-order model that retains the essential structures and key properties of the original model is built using the second-order Arnoldi (SOAR) method. The accuracy and feasibility of the proposed algorithms are finally validated via some two-dimensional numerical examples.
© 2023 John Wiley & Sons, Ltd.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
74S99 Numerical and other methods in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76Q05 Hydro- and aero-acoustics
76M15 Boundary element methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] DühringM, JensenJ, SigmundO. Acoustic design by topology optimization. J Sound Vib. 2008;317(3):557‐575. doi:10.1016/j.jsv.2008.03.042
[2] SigmundO. On the usefulness of non‐gradient approaches in topology optimization. Struct Multidiscip Optim. 2011;43(5):589‐596. doi:10.1007/s00158‐011‐0638‐7 · Zbl 1274.74390
[3] LiY, ZhuJ, WangF, ZhangW, SigmundO. Shape preserving design of geometrically nonlinear structures using topology optimization. Struct Multidiscip Optim. 2019;59(4):1033‐1051. doi:10.1007/s00158‐018‐2186‐x
[4] MarburgS. Developments in structural‐acoustic optimization for passive noise control. Archives Computat Methods Eng. 2002;9(4):291‐370. doi:10.1007/BF03041465 · Zbl 1099.74538
[5] YangR, DuJ. Microstructural topology optimization with respect to sound power radiation. Struct Multidiscip Optim. 2013;47(2):191‐206. doi:10.1007/s00158‐012‐0838‐9 · Zbl 1274.74421
[6] LianH, ChenL, LinX, ZhaoW, BordasS, ZhouM. Noise Pollution Reduction through a Novel Optimization Procedure in Passive Control Methods. Comput Model Eng Sci. 2022;131(1):1‐18. doi:10.32604/cmes.2022.019705
[7] YoonGH, JensenJS, SigmundO. Topology optimization of acoustic-structure interaction problems using a mixed finite element formulation. Int J Numer Methods Eng. 2007;70(9):1049‐1075. doi:10.1002/nme.1900 · Zbl 1194.74277
[8] SchneiderS. FE/FMBE coupling to model fluid‐structure interaction. Int J Numer Methods Eng. 2008;76(13):2137‐2156. doi:10.1002/nme.2399 · Zbl 1195.74196
[9] LundgaardC, AlexandersenJ, ZhouM, AndreasenCS, SigmundO. Revisiting density‐based topology optimization for fluid‐structure‐interaction problems. Struct Multidiscip Optim. 2018;58(3):969‐995. doi:10.1007/s00158‐018‐1940‐4
[10] KangZ, ZhangX, JiangS, ChengG. On topology optimization of damping layer in shell structures under harmonic excitations. Struct Multidiscip Optim. 2012;46(1):51‐67. doi:10.1007/s00158‐011‐0746‐4 · Zbl 1274.74348
[11] KimK, YoonG. Optimal rigid and porous material distributions for noise barrier by acoustic topology optimization. J Sound Vib. 2015;339:123‐142. doi:10.1016/j.jsv.2014.11.030
[12] YoonGH. Topology optimization for stationary fluid‐structure interaction problems using a new monolithic formulation. Int J Numer Methods Eng. 2010;82(5):591‐616. doi:10.1002/nme.2777 · Zbl 1188.74048
[13] JensenP, WangF, DiminoI, SigmundO. Topology Optimization of Large‐Scale 3D Morphing Wing Structures. Actuators. 2021;10:217. doi:10.3390/act10090217
[14] ChenL, LianH, LiuZ, GongY, ZhengC, BordasS. Bi‐material topology optimization for fully coupled structural‐acoustic systems with isogeometric FEM-BEM. Eng Anal Bound Elem. 2022;135:182‐195. doi:10.1016/j.enganabound.2021.11.005 · Zbl 1521.74209
[15] IshizukaT, FujiwaraK. Performance of noise barriers with various edge shapes and acoustical conditions. Appl Acoust. 2004;65(2):125‐141. doi:10.1016/j.apacoust.2003.08.006
[16] ChenL, LianH, XuY, et al. Generalized isogeometric boundary element method for uncertainty analysis of time‐harmonic wave propagation in infinite domains. Appl Math Model. 2023;114:360‐378. doi:10.1016/j.apm.2022.09.030 · Zbl 1510.65305
[17] ZhaoW, ChenL, ChenH, MarburgS. Topology optimization of exterior acoustic‐structure interaction systems using the coupled FEM‐BEM method. Int J Numer Methods Eng. 2019;119(5):404‐431. doi:10.1002/nme.6055 · Zbl 1425.74384
[18] ChenL, LianH, LiuZ, ChenH, AtroshchenkoE, BordasS. Structural shape optimization of three dimensional acoustic problems with isogeometric boundary element methods. Comput Methods Appl Mech Eng. 2019;355:926‐951. doi:10.1016/j.cma.2019.06.012 · Zbl 1441.74290
[19] JingG, GaoH, XiangJ. A level‐set topological optimization method to analyze two‐dimensional thermal problem using BEM. Appl Math Model. 2020;78:37‐56. doi:10.1016/j.apm.2019.10.002 · Zbl 1481.74617
[20] ZhangJ, LinW, ShuX, ZhongY. A dual interpolation boundary face method for exterior acoustic problems based on the Burton-Miller formulation. Eng Anal Bound Elem. 2020;113:219‐231. doi:10.1016/j.enganabound.2020.01.005 · Zbl 1464.76119
[21] AndersenPR, HenríquezVC, AageN, MarburgS. A Two‐Dimensional Acoustic Tangential Derivative Boundary Element Method Including Viscous and Thermal Losses. J Theoretical Computat Acoustics. 2018;26(3):1850036. doi:10.1142/S2591728518500366
[22] LianH, KerfridenP, BordasSPA. Implementation of regularized isogeometric boundary element methods for gradient‐based shape optimization in two‐dimensional linear elasticity. Int J Numer Methods Eng. 2016;106(12):972‐1017. doi:10.1002/nme.5149 · Zbl 1352.74467
[23] FuZ, ChenW, WenP, ZhangC. Singular boundary method for wave propagation analysis in periodic structures. J Sound Vib. 2018;425:170‐188. doi:10.1016/j.jsv.2018.04.005
[24] AnevlaviD, BelibassakisK. Analysis of partially cavitating hydrofoils under the free surface using BEM‐based adjoint optimization. Appl Math Model. 2022;112:415‐435. doi:10.1016/j.apm.2022.07.033 · Zbl 1505.76064
[25] LiJ, ChenW, FuZ, QinQH. A regularized approach evaluating the near‐boundary and boundary solutions for three‐dimensional Helmholtz equation with wideband wavenumbers. Appl Math Lett. 2019;91:55‐60. doi:10.1016/j.aml.2018.11.027 · Zbl 1411.35084
[26] DaveauC, AubakirovA, OueslatiS, CarreC. Boundary element method with high order impedance boundary condition for Maxwell’s equations. Appl Math Model. 2023;118:53‐70. doi:10.1016/j.apm.2022.12.039 · Zbl 1510.78061
[27] SobolevAF. Wide‐band sound‐absorbing structures for aircraft engine ducts. Acoust Phys. 2000;46(4):466‐473. doi:10.1134/1.29911
[28] WangZ, ZhaoZ, LiuZ, HuangQ. A method for multi‐frequency calculation of boundary integral equation in acoustics based on series expansion. Appl Acoust. 2009;70(3):459‐468. doi:10.1016/j.apacoust.2008.05.005
[29] LiS. An efficient technique for multi‐frequency acoustic analysis by boundary element method. J Sound Vib. 2005;283(3):971‐980. doi:10.1016/j.jsv.2004.05.027
[30] WuTW, LiWL, SeybertAF. An efficient boundary element algorithm for multi‐frequency acoustical analysis. J Acoust Soc Am. 1993;94(1):447‐452. doi:10.1121/1.407056
[31] KirkupS, HenwoodD. Methods for Speeding Up the Boundary Element Solution of Acoustic Radiation Problems. J Vib Acoust. 1992;114(3):374‐380. doi:10.1115/1.2930272
[32] MalhotraM, PinskyP. Efficient computation of multi‐frequency far‐field solutions of the Helmholtz equation using Padé approximation. J Comput Acoust. 2000;8(1):223‐240. doi:10.1142/S0218396X00000145 · Zbl 1360.76201
[33] VanhilleC, LavieA. An efficient tool for multi‐frequency analysis in acoustic scattering or radiation by boundary element method. Acta Acust Acust. 1998;84(5):884‐893.
[34] XieX, ZhengH, JonckheereS, van deWalleA, PluymersB, DesmetW. Adaptive model reduction technique for large‐scale dynamical systems with frequency‐dependent damping. Comput Methods Appl Mech Eng. 2018;332:363‐381. doi:10.1016/j.cma.2017.12.023 · Zbl 1440.74452
[35] ZhangQ, MaoY, QiD, GuY. An improved series expansion method to accelerate the multi‐frequency acoustic radiation prediction. J Comput Acoust. 2015;23(1):1450015. doi:10.1142/S0218396X14500155 · Zbl 1360.76179
[36] LiQ, SigmundO, JensenJ, AageN. Reduced‐order methods for dynamic problems in topology optimization: A comparative study. Comput Methods Appl Mech Eng. 2021;387:114149. doi:10.1016/j.cma.2021.114149 · Zbl 1507.74318
[37] BaiZ. Krylov subspace techniques for reduced‐order modeling of large‐scale dynamical systems. Appl Numer Math. 2002;43(1):9‐44. doi:10.1016/S0168‐9274(02)00116‐2 · Zbl 1012.65136
[38] PearsonK. On lines and planes of closest fit to systems of points in space. Philos Mag Series 1. 1901;2(11):559‐572. doi:10.1080/14786440109462720 · JFM 32.0246.07
[39] ChenL, ChengR, LiS, LianH, ZhengC, BordasSPA. A sample‐efficient deep learning method for multivariate uncertainty qualification of acoustic-vibration interaction problems. Comput Methods Appl Mech Eng. 2022;393:114784. doi:10.1016/j.cma.2022.114784 · Zbl 1507.74160
[40] ChatterjeeA. An introduction to the proper orthogonal decomposition. Curr Sci. 2000;78(7):808‐817. doi:10.2307/24103957
[41] ChinestaF, LadevèzeP. Separated representations and PGD‐based model reduction. Funda Appl Internat Centre Mech Siences Courses Lect. 2014;554:24. · Zbl 1300.93001
[42] BaiZ, SuY. Second‐order Krylov subspace and arnoldi procedure. J Shanghai Univ (English Edition). 2004;8(4):378‐390. doi:10.1007/s11741‐004‐0048‐9
[43] BaiZ, SuY. SOAR: A second‐order Arnoldi method for the solution of the quadratic eigenvalue problem. SIAM J Matrix Analy Appl. 2005;26(3):640‐659. doi:10.1137/S0895479803438523 · Zbl 1080.65024
[44] YangC. Solving large‐scale eigenvalue problems in SciDAC applications. J Phys Conf Ser. 2005;16:425‐434. doi:10.1088/1742‐6596/16/1/058
[45] PuriR, MorreyD. A comparison of one‐and two‐sided Krylov-Arnoldi projection methods for fully coupled, damped structural‐acoustic analysis. J Comput Acoust. 2013;21(2):1350004. doi:10.1142/S0218396X13500045 · Zbl 1360.70032
[46] XieX, LiuY. An adaptive model order reduction method for boundary element‐based multi‐frequency acoustic wave problems. Comput Methods Appl Mech Eng. 2021;373:113532. doi:10.1016/j.cma.2020.113532 · Zbl 1506.74470
[47] ChenL, LuC, LianH, et al. Acoustic topology optimization of sound absorbing materials directly from subdivision surfaces with isogeometric boundary element methods. Comput Methods Appl Mech Eng. 2020;362:112806. doi:10.1016/j.cma.2019.112806 · Zbl 1439.74263
[48] KuriokaH, NakayamaN, FurutaK, et al. Multiscale optimal design method of acoustic metamaterials using topology optimization. Int J Numer Methods Eng. 2023;124(13):2995‐3024. doi:10.1002/nme.7237 · Zbl 1533.74066
[49] ZhangH, DingX, WangQ, NiW, LiH. Topology optimization of composite material with high broadband damping. Comput Struct. 2020;239:106331. doi:10.1016/j.compstruc.2020.106331
[50] NoguchiY, YamadaT, IzuiK, NishiwakiS. Optimum design of an acoustic metamaterial with negative bulk modulus in an acoustic‐elastic coupled system using a level set-based topology optimization method. Int J Numer Methods Eng. 2018;113(8):1300‐1339. doi:10.1002/nme.5616 · Zbl 07874753
[51] ZhengH, ZhaoG, ShangL, YuY. Topology optimization of bi‐material curved shell structures for minimizing time‐domain sound radiation. Int J Numer Methods Eng. 2022;123(11):2530‐2555. doi:10.1002/nme.6949 · Zbl 1527.74062
[52] BurtonAJ, MillerGF. The application of integral equation methods to the numerical solution of some exterior boundary‐value problems. Proc R Soc London A Math Phys Sci. 1971;323(1553):201‐210. doi:10.1098/rspa.1971.0097 · Zbl 0235.65080
[53] ZhouH, LiuY, WangJ. Optimizing orthogonal‐octahedron finite‐difference scheme for 3D acoustic wave modeling by combination of Taylor‐series expansion and Remez exchange method. Explor Geophys. 2021;52(3):335‐355. doi:10.1080/08123985.2020.1826890
[54] BaiZ, SuY. Dimension reduction of large‐scale second‐order dynamical systems via a second‐order Arnoldi method. SIAM J Sci Comput. 2005;26(5):1692‐1709. doi:10.1137/040605552 · Zbl 1078.65058
[55] BaiZ, YeQ. Error Estimation of the Padé Approximation of Transfer Functions via the Lanczos Process. Electron Trans Numer Anal. 1998;7:1‐17. doi:10.1038/302353a0 · Zbl 0913.41013
[56] NishimuraN. Fast multipole accelerated boundary integral equation methods. Appl Mech Rev. 2002;55(4):299‐324. doi:10.1115/1.1482087
[57] MarburgS. The Burton and Miller method: Unlocking another mystery of its coupling parameter. J Comput Acoust. 2016;24(1):150603211921008. doi:10.1142/S0218396X15500162 · Zbl 1360.76167
[58] GuiggianiM, CasaliniP. Direct computation of Cauchy principal value integrals in advanced boundary elements. Int J Numer Methods Eng. 1987;24(9):1711‐1720. doi:10.1002/nme.1620240908 · Zbl 0635.65020
[59] JungerMC. Feit DM. Sound; 1972.
[60] SvanbergK. The method of moving asymptotes‐a new method for structural optimization. Int J Numer Methods Eng. 1987;24(2):359‐373. doi:10.1002/nme.1620240207 · Zbl 0602.73091
[61] BerardiU, IannaceG. Predicting the sound absorption of natural materials: Best‐fit inverse laws for the acoustic impedance and the propagation constant. Appl Acoust. 2017;115:131‐138. doi:10.1016/j.apacoust.2016.08.012
[62] BendsøeMP, SigmundO. Material interpolation schemes in topology optimization. Arch Appl Mech. 1999;69(9):635‐654. doi:10.1007/s004190050248 · Zbl 0957.74037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.