×

Extraction of inductances and spatial distributions of currents in a model of superconducting neuron. (English. Russian original) Zbl 1469.82040

Comput. Math. Math. Phys. 61, No. 5, 854-863 (2021); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 5, 885-894 (2021).
Summary: A mathematical model and a computational method for extracting the inductances and spatial distributions of supercurrents in an adiabatic artificial neuron are proposed. This neuron is a multilayer structure containing Josephson junctions. The computational method is based on the simultaneous solution of the London equations for the currents in the superconductor layers and Maxwell’s equations, which determine the spatial distribution of the magnetic field, and on a model of the current sheet, which accounts for the finite depth of conducting layers and current contacts. This approach effectively takes into account interlayer contacts and Josephson junctions in the form of distributed current sources. The resulting equations are solved using the finite element method with large dense matrices. Computational results for the model of neuron with a sigmoid transfer function are presented. To optimize the device design, both the operating (planned in the first phase of the design) and parasitic inductances and the distribution of currents are calculated. The proposed methodology and software can be used for simulating a wide range of superconductor devices based on superconducting quantum interference devices.

MSC:

82D55 Statistical mechanics of superconductors
35Q60 PDEs in connection with optics and electromagnetic theory
35Q82 PDEs in connection with statistical mechanics
92B20 Neural networks for/in biological studies, artificial life and related topics
82M10 Finite element, Galerkin and related methods applied to problems in statistical mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Software:

Fasthenry; Triangle
Full Text: DOI

References:

[1] Soloviev, I. I.; Klenov, N. V.; Schegolev, A. E.; Bakurskiy, S. V.; Kupriyanov, M. Yu., Analytical derivation of DC SQUID response, Superconductor Sci. Technol., 29, 094005 (2016) · doi:10.1088/0953-2048/29/9/094005
[2] Kornev, V. K.; Kolotinskiy, N. V.; Bazulin, D. E.; Mukhanov, O. A., High linearity bi-SQUID: Design map, IEEE Trans. Appl. Superconductivity, 28, 1-5 (2018)
[3] Soloviev, I. I.; Ruzhickiy, V. I.; Klenov, N. V.; Bakurskiy, S. V.; Kupriyanov, M. Yu., A linear magnetic flux-to-voltage transfer function of a differential DC SQUID, Superconductor Sci. Technol., 32, 074005 (2019) · doi:10.1088/1361-6668/ab0d73
[4] Katayama, H.; Fujii, T.; Hatakenaka, N., Theoretical basis of SQUID-based artificial neurons, J. Appl. Phys., 124, 152106 (2018) · doi:10.1063/1.5037718
[5] Soloviev, I. I.; Schegolev, A. E.; Klenov, N. V.; Bakurskiy, S. V.; Kupriyanov, M. Y.; Tereshonok, M. V.; Shadrin, A. V.; Stolyarov, V. S.; Golubov, A. A., Adiabatic superconducting artificial neural network: Basic cells, J. Appl. Phys., 124, 152113 (2018) · doi:10.1063/1.5042147
[6] Klenov, N. V.; Schegolev, A. E.; Soloviev, I. I.; Bakurskiy, S. V.; Tereshonok, M. V., Energy efficient superconducting neural networks for high-speed intellectual data processing systems, IEEE Trans. Appl. Superconductivity, 28, 1-6 (2018) · doi:10.1109/TASC.2018.2836903
[7] Schegolev, A. E.; Klenov, N. V.; Soloviev, I. I.; Tereshonok, M. V., Adiabatic superconducting cells for ultra-low-power artificial neural networks, Beilstein J. Nanotechnol., 7, 1397-1403 (2016) · doi:10.3762/bjnano.7.130
[8] Khapaev, M. M., Inductance extraction of multilayer finite-thickness superconductor circuits, IEEE Trans. Microwave Theory Techn., 49, 217-220 (2001) · doi:10.1109/22.900014
[9] Khapaev, M. M.; Kupriyanov, M. Ya., Inductance extraction of superconductor structures with internal current sources, Superconductor Sci. Technol., 28, 055013 (2015) · doi:10.1088/0953-2048/28/5/055013
[10] Schmidt, V. V., The Physics of Superconductors: Introduction to Fundamentals and Applications (2010), Springer: Berlin, Springer
[11] Orlando, T. P.; Delin, K. A., Foundations of Applied Superconductivity (1991) · doi:10.1063/1.2810145
[12] Kamon, M.; Tsuk, M. J.; White, J. K., FASTHENRY: A multipole-accelerated 3D inductance extraction program, IEEE Trans. Microwave Theory Techn., 42, 1750-1758 (1994) · doi:10.1109/22.310584
[13] Yucel, A. C.; Georgakis, I. P.; Polimeridis, A. G.; Bagci, H.; White, J. K., VoxHenry: FFT-accelerated inductance extraction for voxelized geometries, IEEE Trans. Microwave Theory Techn., 66, 1723-1735 (2018) · doi:10.1109/TMTT.2017.2785842
[14] S. R. Whiteley, Fasthenry 3.0wr. http://www.wrcad.com.
[15] Fourie, C. J.; Jackman, K., Software tools for flux trapping and magnetic field analysis in superconducting circuits, IEEE Trans. Appl. Superconductivity, 29, 1301004 (2019)
[16] Ervin, V. J.; Stephan, E. P., A boundary element Galerkin method for a hypersingular integral equation on open surfaces, Math. Meth. Appl. Sci., 13, 281-289 (1990) · Zbl 0717.65092 · doi:10.1002/mma.1670130402
[17] Khapaev, M. M.; Kupriyanov, M. Ya., Matrix Methods (2010) · Zbl 1215.65198
[18] Jin, J. M., The Finite Element Method in Electromagnetics (2015)
[19] Shewchuk, J. R., Delaunay refinement algorithms for triangular mesh generation, Comput. Geom.: Theory Appl., 22, 21-74 (2002) · Zbl 1016.68139 · doi:10.1016/S0925-7721(01)00047-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.