×

Impact of \(b \rightarrow c\) measurements on \(\Lambda_b\to p\tau\bar{\nu}\) decay in \(U_1\) leptoquark model. (English) Zbl 1523.81010

Summary: The measurements of several lepton flavor universality (LFU) violating observables in the decays induced by the quark level transition \(b\to c\tau\bar{\nu}\) provide an inkling of plausible physics beyond the standard model of electroweak interactions. Such new physics would also impact other sectors. In this work, we estimate the leverage of new physics in \(b\to c\tau\bar{\nu}\) on \(\Lambda_b \to p\tau\bar{\nu}\) decay in the context of \(U_1\) leptoquark model. In this model, the new physics couplings in \(b\to u\tau\bar{\nu}\) transition can be written in terms of \(b\to c\tau\bar{\nu}\) couplings and hence the extent of allowed new physics in \(\Lambda_b\to p\tau\bar{\nu}\) would be determined by \(b\to c\tau\bar{\nu}\) transition. Using the new physics parameter space obtained by performing a fit to all \(b\to c\tau\bar{\nu}\) data, we obtain predictions of several \(\Lambda_b\to p\tau\bar{\nu}\) observables. We find that the current \(b\to c\tau\bar{\nu}\) data allows two times of magnitude enhancement in the branching ratio as well as in the LFU ratio. The other observables such as convexity parameter, lepton forward-backward asymmetry, longitudinal polarization of final state baryon and tau lepton are consistent with the SM value.

MSC:

81P15 Quantum measurement theory, state operations, state preparations
81U90 Particle decays
81V05 Strong interaction, including quantum chromodynamics
81V15 Weak interaction in quantum theory
81V35 Nuclear physics

References:

[1] Lees, J. P., Evidence for an excess of \(\overline{B} \to D^{( \ast )} \tau^- \overline{\nu}_\tau\) decays, Phys. Rev. Lett., 109, Article 101802 pp. (2012)
[2] Lees, J. P., Measurement of an excess of \(\overline{B} \to D^{( \ast )} \tau^- \overline{\nu}_\tau\) decays and implications for charged Higgs bosons, Phys. Rev. D, 88, 7, Article 072012 pp. (2013)
[3] Huschle, M., Measurement of the branching ratio of \(\overline{B} \to D^{( \ast )} \tau^- \overline{\nu}_\tau\) relative to \(\overline{B} \to D^{( \ast )} \ell^- \overline{\nu}_\ell\) decays with hadronic tagging at Belle, Phys. Rev. D, 92, 7, Article 072014 pp. (2015)
[4] Sato, Y., Measurement of the branching ratio of \(\overline{B}^0 \to D^{\ast +} \tau^- \overline{\nu}_\tau\) relative to \(\overline{B}^0 \to D^{\ast +} \ell^- \overline{\nu}_\ell\) decays with a semileptonic tagging method, Phys. Rev. D, 94, 7, Article 072007 pp. (2016)
[5] Hirose, S., Measurement of the τ lepton polarization and \(R( D^\ast)\) in the decay \(\overline{B} \to D^\ast \tau^- \overline{\nu}_\tau \), Phys. Rev. Lett., 118, 21, Article 211801 pp. (2017)
[6] Aaij, R., Measurement of the ratio of branching fractions \(\mathcal{B}( \overline{B}^0 \to D^{\ast +} \tau^- \overline{\nu}_\tau) / \mathcal{B}( \overline{B}^0 \to D^{\ast +} \mu^- \overline{\nu}_\mu)\), Phys. Rev. Lett.. Phys. Rev. Lett., Phys. Rev. Lett., 115, 15, Article 159901 pp. (2015)
[7] https://indico.cern.ch/event/1231797/attachments/2615232/4524828/RDstarHadCERNSeminar.pdf
[8] https://hflav-eos.web.cern.ch/hflav-eos/semi/winter23prel/html/RDsDsstar/RDRDs.html
[9] Aaij, R., Measurement of the ratio of the \(B^0 \to D^{\ast -} \tau^+ \nu_\tau\) and \(B^0 \to D^{\ast -} \mu^+ \nu_\mu\) branching fractions using three-prong τ-lepton decays, Phys. Rev. Lett., 120, 17, Article 171802 pp. (2018)
[10] http://www.slac.stanford.edu/xorg/hfag/semi/fpcp17/RDRDs.html
[11] Abdesselam, A., Measurement of \(\mathcal{R}(D)\) and \(\mathcal{R}( D^\ast)\) with a semileptonic tagging method
[12] Aaij, R., Measurement of the ratio of branching fractions \(\mathcal{B}( B_c^+ \to J / \psi \tau^+ \nu_\tau)/\mathcal{B}( B_c^+ \to J / \psi \mu^+ \nu_\mu)\), Phys. Rev. Lett., 120, 12, Article 121801 pp. (2018)
[13] Harrison, J.; Lattice-Hpqcd, Phys. Rev. Lett., 125, 22, Article 222003 pp. (2020)
[14] Alok, A. K.; Kumar, D.; Kumar, J.; Kumbhakar, S.; Sankar, S. U., J. High Energy Phys., 09, Article 152 pp. (2018)
[15] Glattauer, R., Measurement of the decay \(B \to D \ell \nu_\ell\) in fully reconstructed events and determination of the Cabibbo-Kobayashi-Maskawa matrix element \(| V_{c b} |\), Phys. Rev. D, 93, 3, Article 032006 pp. (2016)
[16] Abdesselam, A., Precise determination of the CKM matrix element \(| V_{c b} |\) with \(\overline{B}^0 \to D^{\ast +} \ell^- \overline{\nu}_\ell\) decays with hadronic tagging at Belle
[17] Aaij, R., Observation of the decay \(\operatorname{\Lambda}_b^0 \to \operatorname{\Lambda}_c^+ \tau^- \overline{\nu}_\tau \), Phys. Rev. Lett., 128, 19, Article 191803 pp. (2022)
[18] Bernlochner, F. U.; Ligeti, Z.; Robinson, D. J.; Sutcliffe, W. L., Precise predictions for \(\operatorname{\Lambda}_b \to \operatorname{\Lambda}_c\) semileptonic decays, Phys. Rev. D, 99, 5, Article 055008 pp. (2019)
[19] Tanaka, M.; Watanabe, R., New physics in the weak interaction of \(\overline{B} \to D^{( \ast )} \tau \overline{\nu} \), Phys. Rev. D, 87, 3, Article 034028 pp. (2013)
[20] Abdesselam, A., Measurement of the \(D^{\ast -}\) polarization in the decay \(B^0 \to D^{\ast -} \tau^+ \nu_\tau \)
[21] Alok, A. K.; Kumar, D.; Kumbhakar, S.; Sankar, S. U., \( D^\ast\) polarization as a probe to discriminate new physics in \(\overline{B} \to D^\ast \tau \overline{\nu} \), Phys. Rev. D, 95, 11, Article 115038 pp. (2017)
[22] Freytsis, M.; Ligeti, Z.; Ruderman, J. T., Flavor models for \(\overline{B} \to D^{( \ast )} \tau \overline{\nu} \), Phys. Rev. D, 92, 5, Article 054018 pp. (2015)
[23] Jung, M.; Straub, D. M., Constraining new physics in \(b \to c \ell \nu\) transitions, J. High Energy Phys., 01, Article 009 pp. (2019)
[24] Bhattacharya, S.; Nandi, S.; Kumar Patra, S., \(b \to c \tau \nu_\tau\) decays: a catalogue to compare, constrain, and correlate new physics effects, Eur. Phys. J. C, 79, 3, 268 (2019)
[25] Hu, Q. Y.; Li, X. Q.; Yang, Y. D., \(b \to c \tau \nu\) transitions in the standard model effective field theory, Eur. Phys. J. C, 79, 3, 264 (2019)
[26] Alok, A. K.; Kumar, D.; Kumbhakar, S.; Uma Sankar, S., Solutions to \(R_D- R_{D^\ast}\) in light of Belle 2019 data, Nucl. Phys. B, 953, Article 114957 pp. (2020) · Zbl 1473.81237
[27] Asadi, P.; Shih, D., Maximizing the impact of new physics in \(b \to c \tau \nu\) anomalies, Phys. Rev. D, 100, 11, Article 115013 pp. (2019)
[28] Murgui, C.; Peñuelas, A.; Jung, M.; Pich, A., Global fit to \(b \to c \tau \nu\) transitions, J. High Energy Phys., 09, Article 103 pp. (2019)
[29] Bardhan, D.; Ghosh, D., B -meson charged current anomalies: the post-Moriond 2019 status, Phys. Rev. D, 100, 1, Article 011701 pp. (2019)
[30] Blanke, M.; Crivellin, A.; Kitahara, T.; Moscati, M.; Nierste, U.; Nišandžić, I., Addendum to “Impact of polarization observables and \(B_c \to \tau \nu\) on new physics explanations of the \(b \to c \tau \nu\) anomaly”, Phys. Rev. D, 100, 3, Article 035035 pp. (2019)
[31] Shi, R. X.; Geng, L. S.; Grinstein, B.; Jäger, S.; Camalich, J. Martin, Revisiting the new-physics interpretation of the \(b \to c \tau \nu\) data, J. High Energy Phys., 12, Article 065 pp. (2019)
[32] Bečirević, D.; Fedele, M.; Nišandžić, I.; Tayduganov, A., Lepton Flavor Universality tests through angular observables of \(\overline{B} \to D^{( \ast )} \ell \overline{\nu}\) decay modes
[33] Sahoo, S.; Mohanta, R., Investigating the role of new physics in \(b \to c \tau \overline{\nu}_\tau\) transitions
[34] Cheung, K.; Huang, Z. R.; Li, H. D.; Lu, C. D.; Mao, Y. N.; Tang, R. Y., Revisit to the \(b \to c \tau \nu\) transition: in and beyond the SM
[35] Cardozo, J.; Muñoz, J. H.; Quintero, N.; Rojas, E., Analysing the charged scalar boson contribution to the charged-current B meson anomalies
[36] Carvunis, A.; Crivellin, A.; Guadagnoli, D.; Gangal, S., The forward-backward asymmetry in \(B \to D^\ast \ell \nu \): one more hint for scalar leptoquarks?, Phys. Rev. D, 105, 3, Article L031701 pp. (2022)
[37] Alok, A. K.; Kumar, D.; Kumbhakar, S.; Uma Sankar, S., Resolution of \(R_D/ R_{D^\ast}\) puzzle, Phys. Lett. B, 784, 16-20 (2018)
[38] Feruglio, F.; Paradisi, P.; Pattori, A., J. High Energy Phys., 09, Article 061 pp. (2017)
[39] Calibbi, L.; Crivellin, A.; Li, T., Phys. Rev. D, 98, 11, Article 115002 pp. (2018)
[40] Blanke, M.; Crivellin, A., Phys. Rev. Lett., 121, 1, Article 011801 pp. (2018)
[41] Crivellin, A.; Greub, C.; Müller, D.; Saturnino, F., Phys. Rev. Lett., 122, 1, Article 011805 pp. (2019)
[42] Kumbhakar, S.; Mohanta, R., J. Phys. G, 48, 7, Article 075006 pp. (2021)
[43] Cornella, C.; Faroughy, D. A.; Fuentes-Martin, J.; Isidori, G.; Neubert, M., J. High Energy Phys., 08, Article 050 pp. (2021)
[44] Bernigaud, J.; Blanke, M.; de Medeiros Varzielas, I.; Talbert, J.; Zurita, J., J. High Energy Phys., 08, Article 127 pp. (2022)
[45] Dutta, R., Phys. Rev. D, 93, 5, Article 054003 pp. (2016)
[46] Ray, A.; Sahoo, S.; Mohanta, R., Phys. Rev. D, 99, 1, Article 015015 pp. (2019)
[47] Workman, R. L., PTEP, 2022, Article 083C01 pp. (2022)
[48] Hamer, P., Search for \(B^0 \to \pi^- \tau^+ \nu_\tau\) with hadronic tagging at Belle, Phys. Rev. D, 93, 3, Article 032007 pp. (2016)
[49] Doršner, I.; Fajfer, S.; Greljo, A.; Kamenik, J. F.; Košnik, N., Physics of leptoquarks in precision experiments and at particle colliders, Phys. Rep., 641, 1-68 (2016)
[50] Bhaskar, A.; Das, D.; Mandal, T.; Mitra, S.; Neeraj, C., Precise limits on the charge-2/3 U1 vector leptoquark, Phys. Rev. D, 104, 3, Article 035016 pp. (2021)
[51] Blanke, M.; Crivellin, A.; de Boer, S.; Kitahara, T.; Moscati, M.; Nierste, U.; Nišandžić, I., Impact of polarization observables and \(B_c \to \tau \nu\) on new physics explanations of the \(b \to c \tau \nu\) anomaly, Phys. Rev. D, 99, 7, Article 075006 pp. (2019)
[52] Harrison, J., Phys. Rev. D, 102, 9, Article 094518 pp. (2020)
[53] Shivashankara, S.; Wu, W.; Datta, A., \( \operatorname{\Lambda}_b \to \operatorname{\Lambda}_c \tau \overline{\nu}_\tau\) decay in the Standard Model and with new physics, Phys. Rev. D, 91, 11, Article 115003 pp. (2015)
[54] Adamczyk, K., Semitauonic B decays at Belle/Belle II
[55] Alonso, R.; Grinstein, B.; Camalich, J. Martin, Phys. Rev. Lett., 118, 8, Article 081802 pp. (2017)
[56] Detmold, W.; Lehner, C.; Meinel, S., \( \operatorname{\Lambda}_b \to p \ell^- \overline{\nu}_\ell\) and \(\operatorname{\Lambda}_b \to \operatorname{\Lambda}_c \ell^- \overline{\nu}_\ell\) form factors from lattice QCD with relativistic heavy quarks, Phys. Rev. D, 92, 3, Article 034503 pp. (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.