×

Parameterized approximation schemes for independent set of rectangles and geometric knapsack. (English) Zbl 07525490

Bender, Michael A. (ed.) et al., 27th annual European symposium on algorithms, ESA 2019, Munich/Garching, Germany, September 9–11, 2019. Proceedings. Wadern: Schloss Dagstuhl – Leibniz-Zentrum für Informatik. LIPIcs – Leibniz Int. Proc. Inform. 144, Article 53, 16 p. (2019).
Summary: The area of parameterized approximation seeks to combine approximation and parameterized algorithms to obtain, e.g., \((1+\varepsilon)\)-approximations in \(f(k,\varepsilon)n^{O(1)}\) time where \(k\) is some parameter of the input. The goal is to overcome lower bounds from either of the areas. We obtain the following results on parameterized approximability:
In the maximum independent set of rectangles problem (MISR) we are given a collection of \(n\) axis parallel rectangles in the plane. Our goal is to select a maximum-cardinality subset of pairwise non-overlapping rectangles. This problem is NP-hard and also W[1]-hard [D. Marx, Lect. Notes Comput. Sci. 3669, 448–459 (2005; Zbl 1162.68822)]. The best-known polynomial-time approximation factor is \(O(\log\log n)\) [D. Marx, Lect. Notes Comput. Sci. 3669, 448–459 (2005; Zbl 1162.68822)] and it admits a QPTAS [A. Adamaszek and A. Wiese, in: Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2013), pages 400–409. IEEE Computer Society, 2013. doi:10.1109/FOCS.2013.50; J. Chuzhoy and A. Ene, In Proceedings of the IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS 2016), pages 820–829 (2016; doi:10.1109/FOCS.2016.92)]. Here we present a parameterized approximation scheme (PAS) for MISR, i.e. an algorithm that, for any given constant \(\varepsilon>0\) and integer \(k>0\), in time \(f(k,\varepsilon)n^{g(\varepsilon)}\), either outputs a solution of size at least \(k/(1+\varepsilon)\), or declares that the optimum solution has size less than \(k\).
In the (\(2\)-dimensional) geometric knapsack problem (2DK) we are given an axis-aligned square knapsack and a collection of axis-aligned rectangles in the plane (items). Our goal is to translate a maximum cardinality subset of items into the knapsack so that the selected items do not overlap. In the version of 2DK with rotations (2DKR), we are allowed to rotate items by 90 degrees. Both variants are NP-hard, and the best-known polynomial-time approximation factor is \(2+\varepsilon\) [K. Jansen and G. Zhang, in: Proceedings of the fifteenth annual ACM-SIAM symposium on discrete algorithms, SODA 2004, New Orleans, LA, USA, January 11–13, 2004. New York, NY: Association for Computing Machinery (ACM); Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM). 204–213 (2004; Zbl 1317.68280)]. These problems admit a QPTAS for polynomially bounded item sizes [A. Adamaszek and A. Wiese, in: Proceedings of the 26th annual ACM-SIAM symposium on discrete algorithms, SODA 2015, Portland, San Diego, CA, January 4–6, 2015. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM); New York, NY: Association for Computing Machinery (ACM). 1491–1505 (2015; Zbl 1371.90115)]. We show that both variants are W[1]-hard. Furthermore, we present a PAS for 2DKR.
For all considered problems, getting time \(f(k,\varepsilon)n^{O(1)}\), rather than \(f(k,\varepsilon)n^{g(\varepsilon)}\), would give FPT time \(f'(k)n^{O(1)}\) exact algorithms by setting \(\varepsilon=1/(k+1)\), contradicting W[1]-hardness. Instead, for each fixed \(\varepsilon>0\), our PASs give \((1+\varepsilon)\)-approximate solutions in FPT time.
For both MISR and 2DKR our techniques also give rise to preprocessing algorithms that take \(n^{g(\varepsilon)}\) time and return a subset of at most \(k^{g(\varepsilon)}\) rectangles/items that contains a solution of size at least \(k/(1+\varepsilon)\) if a solution of size \(k\) exists. This is a special case of the recently introduced notion of a polynomial-size approximate kernelization scheme [D. Lokshtanov et al., in: Proceedings of the 49th annual ACM SIGACT symposium on theory of computing, STOC ’17, Montreal, QC, Canada, June 19–23, 2017. New York, NY: Association for Computing Machinery (ACM). 224–237 (2017; Zbl 1370.68136)].
For the entire collection see [Zbl 1423.68016].

MSC:

68Wxx Algorithms in computer science

References:

[1] Anna Adamaszek and Andreas Wiese. Approximation Schemes for Maximum Weight Inde-pendent Set of Rectangles. In Proceedings of the 54th Annual IEEE Symposium on Found-ations of Computer Science (FOCS 2013), pages 400-409. IEEE Computer Society, 2013. doi:10.1109/FOCS.2013.50. · doi:10.1109/FOCS.2013.50
[2] Anna Adamaszek and Andreas Wiese. A quasi-PTAS for the Two-dimensional Geometric Knapsack Problem. In Proceedings of the Twenty-sixth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2015), pages 1491-1505. SIAM, 2015. URL: http://dl.acm.org/ citation.cfm?id=2722129.2722227. · Zbl 1371.90115
[3] Cristina Bazgan. Schémas d’approximation et Complexité Paramétrée, Rapport du stage (DEA). Technical report, Universitée Paris Sud, 1995.
[4] Cristina Bazgan, Morgan Chopin, André Nichterlein, and Florian Sikora. Parameterized approximability of maximizing the spread of influence in networks. J. Discrete Algorithms, 27:54-65, 2014. doi:10.1016/j.jda.2014.05.001. · Zbl 1361.68105 · doi:10.1016/j.jda.2014.05.001
[5] Cristina Bazgan, Morgan Chopin, André Nichterlein, and Florian Sikora. Parameterized Inapproximability of Target Set Selection and Generalizations. Computability, 3(2):135-145, 2014. doi:10.3233/COM-140030. · Zbl 1320.68088 · doi:10.3233/COM-140030
[6] Cristina Bazgan and André Nichterlein. Parameterized Inapproximability of Degree Anonym-ization. In Proceedings of the 9th International Symposium on Parameterized and Exact Computation (IPEC 2014), pages 75-84, 2014. doi:10.1007/978-3-319-13524-3_7. · Zbl 1456.68062 · doi:10.1007/978-3-319-13524-3_7
[7] Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov, and Michal Pilipczuk. A c k n 5-Approximation Algorithm for Treewidth. SIAM J. Comput., 45(2):317-378, 2016. doi:10.1137/130947374. · Zbl 1333.05282 · doi:10.1137/130947374
[8] Christina Boucher, Christine Lo, and Daniel Lokshantov. Consensus Patterns (Probably) Has no EPTAS. In Proceedings of the 23rd Annual European Symposium (ESA 2015), pages 239-250, 2015. doi:10.1007/978-3-662-48350-3_21. · Zbl 1466.68089 · doi:10.1007/978-3-662-48350-3_21
[9] Liming Cai and Xiuzhen Huang. Fixed-Parameter Approximation: Conceptual Framework and Approximability Results. In Parameterized and Exact Computation (IWPEC 2006), pages 96-108, 2006. doi:10.1007/11847250_9. · Zbl 1154.68570 · doi:10.1007/11847250_9
[10] Marco Cesati and Luca Trevisan. On the Efficiency of Polynomial Time Approximation Schemes. Inf. Process. Lett., 64(4):165-171, 1997. doi:10.1016/S0020-0190(97)00164-6. · Zbl 1337.68125 · doi:10.1016/S0020-0190(97)00164-6
[11] P. Chalermsook and J. Chuzhoy. Maximum independent set of rectangles. In Proceedings of the 20 th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’09), pages 892-901. SIAM, 2009. · Zbl 1423.90216
[12] Timothy M Chan and Sariel Har-Peled. Approximation algorithms for maximum independent set of pseudo-disks. Discrete & Computational Geometry, 48(2):373-392, 2012. · Zbl 1248.05135
[13] Yijia Chen, Martin Grohe, and Magdalena Grüber. On Parameterized Approximability. In Parameterized and Exact Computation (IWPEC 2006), pages 109-120, 2006. doi:10.1007/ 11847250_10. 53:15 · Zbl 1154.68571 · doi:10.1007/11847250_10
[14] Yijia Chen and Bingkai Lin. The Constant Inapproximability of the Parameterized Dominating Set Problem. In Proceedings of the IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS 2016), pages 505-514, 2016. doi:10.1109/FOCS.2016.61. · Zbl 1422.68082 · doi:10.1109/FOCS.2016.61
[15] Julia Chuzhoy and Alina Ene. On Approximating Maximum Independent Set of Rectangles. In Proceedings of the IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS 2016), pages 820-829, 2016. doi:10.1109/FOCS.2016.92. · doi:10.1109/FOCS.2016.92
[16] Vincent Cohen-Addad and Arnaud de Mesmay. A Fixed Parameter Tractable Approximation Scheme for the Optimal Cut Graph of a Surface. In Proceedings of the 23rd Annual European Symposium (ESA 2015), pages 386-398, 2015. doi:10.1007/978-3-662-48350-3_33. · Zbl 1466.68072 · doi:10.1007/978-3-662-48350-3_33
[17] Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Lower Bounds for Approximation Schemes for Closest String. In 15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016), pages 12:1-12:10, 2016. doi:10.4230/ LIPIcs.SWAT.2016.12. · Zbl 1378.68203 · doi:10.4230/LIPIcs.SWAT.2016.12
[18] Rodney G. Downey and Michael R. Fellows. Fixed-Parameter Tractability and Completeness II: On Completeness for W[1]. · Zbl 0828.68077
[19] Theor. Comput. Sci., 141(1&2):109-131, 1995. doi:10.1016/ 0304-3975(94)00097-3. · Zbl 0873.68059 · doi:10.1016/0304-3975(94)00097-3
[20] Rodney G. Downey, Michael R. Fellows, and Catherine McCartin. Parameterized Approxima-tion Problems. In Proceedings of the Second International Workshop on Parameterized and Exact Computation (IWPEC 2006), pages 121-129, 2006. doi:10.1007/11847250_11. · Zbl 1154.68572 · doi:10.1007/11847250_11
[21] Thomas Erlebach, Klaus Jansen, and Eike Seidel. Polynomial-time approximation schemes for geometric intersection graphs. SIAM Journal on Computing, 34(6):1302-1323, 2005. · Zbl 1081.68031
[22] Greg N Federickson. Fast algorithms for shortest paths in planar graphs, with applications. SIAM Journal on Computing, 16(6):1004-1022, 1987. · Zbl 0654.68087
[23] Andreas Emil Feldmann. Fixed Parameter Approximations for k-Center Problems in Low Highway Dimension Graphs. In Proceedings of the 42nd International Colloquium on Automata, Languages, and Programming (ICALP 2015), pages 588-600, 2015. doi: 10.1007/978-3-662-47666-6_47. · Zbl 1404.68209 · doi:10.1007/978-3-662-47666-6_47
[24] Michael R. Fellows, Ariel Kulik, Frances A. Rosamond, and Hadas Shachnai. Parameterized Approximation via Fidelity Preserving Transformations. In Proceedings of the 39th Interna-tional Colloquium on Automata, Languages, and Programming (ICALP 2012), pages 351-362, 2012. doi:10.1007/978-3-642-31594-7_30. · Zbl 1272.68459 · doi:10.1007/978-3-642-31594-7_30
[25] Robert J Fowler, Michael S Paterson, and Steven L Tanimoto. Optimal packing and covering in the plane are NP-complete. Information processing letters, 12(3):133-137, 1981. · Zbl 0469.68053
[26] Waldo Gálvez, Fabrizio Grandoni, Sandy Heydrich, Salvatore Ingala, Arindam Khan, and Andreas Wiese. Approximating Geometric Knapsack via L-Packings. In Proceedings of the 58th IEEE Annual Symposium on Foundations of Computer Science (FOCS 2017), pages 260-271, 2017. doi:10.1109/FOCS.2017.32. · Zbl 07479303 · doi:10.1109/FOCS.2017.32
[27] Sandy Heydrich and Andreas Wiese. Faster approximation schemes for the two-dimensional knapsack problem. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 79-98. SIAM, 2017. · Zbl 1411.68190
[28] Klaus Jansen and Roberto Solis-Oba. A polynomial time approximation scheme for the square packing problem. In International Conference on Integer Programming and Combinatorial Optimization, pages 184-198. Springer, 2008. · Zbl 1143.90399
[29] Klaus Jansen and Guochaun Zhang. On rectangle packing: maximizing benefits. In Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, pages 204-213. SIAM, 2004. · Zbl 1317.68280
[30] Sudeshna Kolay, Pranabendu Misra, M. S. Ramanujan, and Saket Saurabh. Parameterized Approximations via d-Skew-Symmetric Multicut. In Proceedings of the 39th International Symposium (MFCS 2014), pages 457-468, 2014. doi:10.1007/978-3-662-44465-8_39. · Zbl 1426.68305 · doi:10.1007/978-3-662-44465-8_39
[31] Michael Lampis. Parameterized Approximation Schemes Using Graph Widths. In Proceedings of the 41st International Colloquium on Automata, Languages, and Programming (ICALP 2014), pages 775-786, 2014. doi:10.1007/978-3-662-43948-7_64. · Zbl 1410.68402 · doi:10.1007/978-3-662-43948-7_64
[32] Joseph YT Leung, Tommy W Tam, Chin S Wong, Gilbert H Young, and Francis YL Chin. Packing squares into a square. Journal of Parallel and Distributed Computing, 10(3):271-275, 1990.
[33] Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. Lossy kernelization. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2017), pages 224-237, 2017. doi:10.1145/3055399.3055456. · Zbl 1370.68136 · doi:10.1145/3055399.3055456
[34] Dániel Marx. Efficient Approximation Schemes for Geometric Problems? In Algorithms -Proceedings of ESA 2005, pages 448-459, 2005. doi:10.1007/11561071_41. · Zbl 1162.68822 · doi:10.1007/11561071_41
[35] Dániel Marx. Parameterized Complexity and Approximation Algorithms. Comput. J., 51(1):60-78, 2008. doi:10.1093/comjnl/bxm048. · doi:10.1093/comjnl/bxm048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.