×

Convergence of empirical spectral distributions of large dimensional quaternion sample covariance matrices. (English) Zbl 1400.60007

Summary: In this paper, we establish the limit of empirical spectral distributions of quaternion sample covariance matrices. Motivated by Z. Bai and J. W. Silverstein [Spectral analysis of large dimensional random matrices. 2nd ed. Dordrecht: Springer (2010; Zbl 1301.60002)] and V. A. Marchenko and L. A. Pastur [Math. USSR, Sb. 1, 457–483 (1968; Zbl 0162.22501)], we can extend the results of the real or complex sample covariance matrix to the quaternion case. Suppose \(\mathbf X_n = (x_{jk}^{(n)})_{p\times n}\) is a quaternion random matrix. For each \(n\), the entries \(\{x_{ij}^{(n)}\}\) are independent random quaternion variables with a common mean \(\mu \) and variance \(\sigma^2>0\). It is shown that the empirical spectral distribution of the quaternion sample covariance matrix \(\mathbf S_n=n^{-1}\mathbf X_n\mathbf X_n^*\) converges to the Marčenko-Pastur law as \(p\to \infty \), \(n\to \infty \) and \(p/n\to y\in (0,+\infty)\).

MSC:

60B20 Random matrices (probabilistic aspects)
15B52 Random matrices (algebraic aspects)
15B33 Matrices over special rings (quaternions, finite fields, etc.)

References:

[1] Adler, S. L. (1995). Quaternionic quantum mechanics and quantum fields (Vol. 1). Oxford: Oxford University Press. · Zbl 0885.00019
[2] Akemann, G. (2005). The complex Laguerre symplectic ensemble of non-Hermitian matrices. Nuclear Physics B, 730(3), 253-299. · Zbl 1276.81103 · doi:10.1016/j.nuclphysb.2005.09.039
[3] Akemann, G., Phillips, M. (2013). The interpolating airy kernels for the beta = 1 and beta = 4 elliptic Ginibre ensembles. arXiv:1308.3418. · Zbl 1295.15021
[4] Anderson, G. W., Guionnet, A., Zeitouni, O. (2010). An introduction to random matrices (Vol. 118). Cambridge: Cambridge University Press. · Zbl 1184.15023
[5] Bai, Z. D. (1993). Convergence rate of expected spectral distributions of large random matrices. Part II. Sample covariance matrices. The Annals of Probability, 21(2), 649-672. · Zbl 0779.60025
[6] Bai, Z. D., Silverstein, J. W. (2010). Spectral analysis of large dimensional random matrices (2nd ed.). New York: Springer. · Zbl 1301.60002
[7] Finkelstein, D., Jauch, J. M., Schiminovich, S., Speiser, D. (1962). Foundations of quaternion quantum mechanics. Journal of Mathematical Physics, 3(2), 207. · Zbl 0124.22604
[8] Kanzieper, E. (2002). Eigenvalue correlations in non-Hermitean symplectic random matrices. Journal of Physics A: Mathematical and General, 35(31), 6631. · Zbl 1040.82028 · doi:10.1088/0305-4470/35/31/308
[9] Kuipers, J. B. (1999). Quaternions and rotation sequences. Princeton: Princeton University Press. · Zbl 1053.70001
[10] Marčenko, V. A., Pastur, L. A. (1967). Distribution of eigenvalues for some sets of random matrices. Matematicheskii Sbornik, 114(4), 507-536. · Zbl 0873.15008
[11] Mehta, M. L. (2004). Random matrices (Vol. 142). Access online via Elsevier. · Zbl 0015.24206
[12] So, W., Thompson, R. C., Zhang, F. (1994). The numerical range of normal matrices with quaternion entries. Linear and Multilinear Algebra, 37(1-3), 175-195. · Zbl 0814.15026
[13] Wishart, J. (1928). The generalised product moment distribution in samples from a normal multivariate population. Biometrika, 20(1/2), 32-52. · JFM 54.0565.02 · doi:10.1093/biomet/20A.1-2.32
[14] Wolf, L. A. (1936). Similarity of matrices in which the elements are real quaternions. Bulletin of the American Mathematical Society, 42(10), 737-743. · Zbl 0015.24206 · doi:10.1090/S0002-9904-1936-06417-7
[15] Yin, Y., Bai, Z. D. (2014). Convergence rates of the spectral distributions of large random quaternion self-dual Hermitian matrices. Journal of Statistical Physics, 157(6), 1207-1224. · Zbl 1309.15055
[16] Yin, Y., Bai, Z. D., Hu, J. (2013). On the semicircular law of large dimensional random quaternion matrices. Journal of Theoretical Probability (to appear). arXiv:1309.6937. · Zbl 1353.60024
[17] Yin, Y., Bai, Z. D., Hu, J. (2014). On the limit of extreme eigenvalues of large dimensional random quaternion matrices. Physics Letters A, 378(1617), 1049-1058. · Zbl 1331.15022
[18] Zhang, F. (1995). On numerical range of normal matrices of quaternions. Journal of Mathmatical and Physical Science, 29(6), 235-251. · Zbl 0855.15006
[19] Zhang, F. (1997). Quaternions and matrices of quaternions. Linear Algebra and Its Applications, 251, 21-57. · Zbl 0873.15008 · doi:10.1016/0024-3795(95)00543-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.