×

A quaternion framework for color image smoothing and segmentation. (English) Zbl 1235.68315

Summary: In this paper, we present feature/detail preserving models for color image smoothing and segmentation using the Hamiltonian quaternion framework. First, we introduce a novel quaternionic Gabor filter (QGF) which can combine the color channels and the orientations in the image plane. We show that these filters are optimally localized both in the spatial and frequency domains and provide a good approximation to quaternionic quadrature filters. Using the QGFs, we extract the local orientation information in the color images. Second, in order to model this derived orientation information, we propose continuous mixtures of appropriate exponential basis functions and derive analytic expressions for these models. These analytic expressions take the form of spatially varying kernels which, when convolved with a color image or the signed distance function of an evolving contour (placed in the color image), yield a detail preserving smoothing and segmentation, respectively. Several examples on widely used image databases are shown to depict the performance of our algorithms.

MSC:

68U10 Computing methodologies for image processing
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory

Software:

BSDS
Full Text: DOI

References:

[1] Alfsmann, D., Göckler, H. G., Sangwine, S. J., & Ell, T. A. (2007). Hypercomplex algebras in digital signal processing: benefits and drawbacks (tutorial). In EURASIP 15th European signal processing conference, EUSIPCO 2007, Poland (pp. 1322–1326).
[2] Arbeláez, P. A., & Cohen, L. D. (2006). A metric approach to vector-valued image segmentation. International Journal of Computer Vision, 69(1), 119–126. · doi:10.1007/s11263-006-6857-5
[3] Bar, L., Brook, A., Sochen, N., & Kiryati, N. (2007). Deblurring of color images corrupted by impulsive noise. IEEE Transactions on Image Processing, 16(4), 1101–1111. · doi:10.1109/TIP.2007.891805
[4] Bertelli, L., Sumengen, B., Manjunath, B., & Gibou, F. (2008). A variational framework for multiregion pairwise-similarity-based image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(8), 1400–1414. · doi:10.1109/TPAMI.2007.70785
[5] Blomgren, P., & Chan, T. F. (1998). Color TV: total variation methods for restoration of vector-valued images. IEEE Transactions on Image Processing, 7(3), 304–309. · doi:10.1109/83.661180
[6] Boykov, Y., Veksler, O., & Zabih, R. (1999). Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(2001), 1222–1239. · doi:10.1109/34.969114
[7] Brook, A., Kimmel, R., & Sochen, N. A. (2003). Variational restoration and edge detection for color images. Journal of Mathematical Imaging and Vision, 18(3), 247–268. · Zbl 1020.68079 · doi:10.1023/A:1022895410391
[8] Brox, T., Rousson, M., Deriche, R., & Weickert, J. (2003). Unsupervised segmentation incorporating colour, texture, and motion. In Computer analysis of images and patterns (pp. 353–360).
[9] Buades, A., Coll, B., & Morel, J. M. (2005). A non-local algorithm for image denoising. In IEEE computer vision and pattern recognition, CVPR (Vol. 2, pp. 60–65). Los Alamitos: IEEE Comput. Soc.
[10] Bülow, T. (1999). Hypercomplex spectral signal representations for image processing and analysis. PhD thesis, University of Kiel, Advisor-Gerald Sommer.
[11] Bülow, T., & Sommer, G. (1997a). Das konzept einer zweidimensionalen phase unter verwendung einer algebraisch erweiterten signalrepräsentation. In Mustererkennung, 1997, 19, DAGM-symposium (pp. 351–358). London: Springer.
[12] Bülow, T., & Sommer, G. (1997b). Multi-dimensional signal processing using an algebraically extended signal representation. In AFPAC ’97: Proceedings of the international workshop on algebraic frames for the perception-action cycle (pp. 148–163). London: Springer.
[13] Caselles, V., Catte, F., Coll, T., & Dibos, F. (1993). A geometric model for active contours in image processing. Numerische Mathematik, 66, 1–31. · Zbl 0804.68159 · doi:10.1007/BF01385685
[14] Caselles, V., Kimmel, R., & Sapiro, G. (1997). Geodesic active contours. International Journal of Computer Vision, 22, 61–97. · Zbl 0894.68131 · doi:10.1023/A:1007979827043
[15] Chan, T. F., Sandberg, B. Y., & Vese, L. A. (2000). Active contours without edges for vector-valued images. Journal of Visual Communication and Image Representation, 11, 130–141. · doi:10.1006/jvci.1999.0442
[16] Comaniciu, D., & Meer, P. (2002). Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603–619. · doi:10.1109/34.1000236
[17] Cremers, D., Rousson, M., & Deriche, R. (2007). A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. International Journal of Computer Vision, 72(2), 195–215. · doi:10.1007/s11263-006-8711-1
[18] Daugman, J. G. (1985). Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Journal of the Optical Society of America A, 2(7), 1160–1169. · doi:10.1364/JOSAA.2.001160
[19] Delsuc, M. A. (1988). Spectral representation of 2D NMR spectra by hypercomplex numbers. Journal of Magnetic Resonance, 77(1), 119–124.
[20] Ell, T. (1993). Quaternion-Fourier transforms for analysis of two-dimensional linear time-invariant partial differential systems. In Proceedings of the 32nd IEEE conference on decision and control (Vol. 2, pp. 1830–1841).
[21] Ell, T., & Sangwine, S. (2007). Hypercomplex Fourier transforms of color images. IEEE Transactions on Image Processing, 16(1), 22–35. · Zbl 1279.94014 · doi:10.1109/TIP.2006.884955
[22] Felzenszwalb, P. F., & Huttenlocher, D. P. (2004). Efficient graph-based image segmentation. International Journal of Computer Vision, 59(2), 167–181. · doi:10.1023/B:VISI.0000022288.19776.77
[23] Galatsanos, N. P., Wernic, M. N., Katsaggelos, A. K., & Molina, R. (2005). Multichannel image recovery. In A. Bovik (Ed.), Handbook of image and video processing. Amsterdam/San Diego: Elsevier/Academic Press.
[24] Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6), 721–741. · Zbl 0573.62030 · doi:10.1109/TPAMI.1984.4767596
[25] Herz, C. S. (1955). Bessel functions of matrix argument. The Annals of Mathematics, 61(3), 474–523. · Zbl 0066.32002 · doi:10.2307/1969810
[26] Hui, W., Xiao-Hui, W., Yue, Z., & Jie, Y. (2006). Color texture segmentation using quaternion-Garbor filters. In IEEE international conference on image processing (pp. 745–748).
[27] Jian, B., & Vemuri, B. (2007a). Multi-fiber reconstruction from diffusion MRI using mixture of wisharts and sparse deconvolution. Information Processing in Medical Imaging, 20, 384–395. · doi:10.1007/978-3-540-73273-0_32
[28] Jian, B., & Vemuri, B. C. (2007b). A unified computational framework for deconvolution to reconstruct multiple fibers from diffusion weighted MRI. IEEE Transactions on Medical Imaging, 26(11), 1464–1471. · doi:10.1109/TMI.2007.907552
[29] Jian, B., Vemuri, B. C., Özarslan, E., Carney, P., & Mareci, T. (2007). A novel tensor distribution model for the diffusion-weighted MR signal. Neuroimage, 37(1), 164–176. · doi:10.1016/j.neuroimage.2007.03.074
[30] Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: active contour models. International Journal of Computer Vision, 1(4), 321–331. · Zbl 0646.68105 · doi:10.1007/BF00133570
[31] Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., & Yezzi, A. (1995). Gradient flows and geometric active contour models. In IEEE international conference on computer vision (pp. 810–815).
[32] Kimmel, R., Malladi, R., & Sochen, N. A. (2000). Images as embedded maps and minimal surfaces: movies, color, texture, and volumetric medical images. International Journal of Computer Vision, 39(2), 111–129. · Zbl 1060.68656 · doi:10.1023/A:1008171026419
[33] Kuipers, J. B. (2002). Quaternions and rotation sequences: a primer with applications to orbits, aerospace and virtual reality. Princeton: Princeton University Press. · Zbl 1053.70001
[34] Lawson, C., & Hanson, R. J. (1974). Solving least squares problems. New York: Prentice-Hall. · Zbl 0860.65028
[35] Lukac, R., Smolka, B., Martin, K., Plataniotis, K., & Venetsanopoulos, A. (2005). Vector filtering for color imaging. IEEE Signal Processing Magazine, 22(1), 74–86. · Zbl 1066.92024 · doi:10.1109/MSP.2005.1407717
[36] Malladi, R., Sethian, J. A., & Vemuri, B. C. (1995). Shape modeling with front propagation: a level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(2), 158–175. · doi:10.1109/34.368173
[37] Mardia, K. V., & Jupp, P. E. (2000). Directional statistics, 2nd ed. New York: Wiley. · Zbl 0935.62065
[38] Martin, D., Fowlkes, C., Tal, D., & Malik, J. (2001). A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In IEEE international conference on computer vision (Vol. 2, pp. 416–423).
[39] Moxey, C., Sangwine, S., & Ell, T. (2003). Hypercomplex correlation techniques for vector images. IEEE Transactions on Signal Processing, 51(7), 1941–1953. · Zbl 1369.94032 · doi:10.1109/TSP.2003.812734
[40] Mumford, D., & Shah, J. (1985). Boundary detection by minimizing functionals. In Proceedings of IEEE conference on computer vision and pattern recognition (pp. 22–26).
[41] Paragios, N., Chen, Y., & Faugeras, O. (2005). Handbook of mathematical models in computer vision. New York: Springer. · Zbl 1083.68500
[42] Pei, S.-C., & Cheng, C.-M. (1996). A novel block truncation coding of color images by using quaternion-moment-preserving principle. IEEE International Symposium on Circuits and Systems, 2, 684–687.
[43] Prentice, M. J. (1986). Orientation statistics without parametric assumptions. Journal of the Royal Statistical Society. Series B (Methodological), 48(2), 214–222. · Zbl 0601.62071
[44] Rousson, M., & Paragios, N. (2008). Prior knowledge, level set representations & visual grouping. International Journal of Computer Vision, 76(3), 231–243. · doi:10.1007/s11263-007-0054-z
[45] Sangwine, S. (1996). Fourier transforms of colour images using quaternion or hypercomplex numbers. Electronic Letters, 32(21), 1979–1980. · doi:10.1049/el:19961331
[46] Sangwine, S. (1998). Colour image edge detector based on quaternion convolution. Electronic Letters, 34(10), 969–971. · doi:10.1049/el:19980697
[47] Sangwine, S., & Ell, T. A. (2000a). Colour image filters based on hypercomplex convolution. IEE Proceedings on Vision, Image and Signal Processing, 147(2), 89–93. · doi:10.1049/ip-vis:20000211
[48] Sangwine, S., & Ell, T. A. (2000b). The discrete Fourier transform of a colour image. In J. M. Blackledge & M. J. Turner (Eds.), Image processing II: mathematical methods, algorithms and applications (pp. 430–441).
[49] Sapiro, G. (1997). Color snakes. Computer Vision and Image Understanding, 68(2), 247–253. · doi:10.1006/cviu.1997.0562
[50] Schoenemann, T., & Cremers, D. (2009). A combinatorial solution for model-based image segmentation and real-time tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 99(1).
[51] Sethuraman, B. A., Rajan, B. S., Member, S., & Shashidhar, V. (2003). Full-diversity, highrate space-time block codes from division algebras. IEEE Transactions on Information Theory, 49, 2596–2616. · Zbl 1301.94067 · doi:10.1109/TIT.2003.817831
[52] Shi, L., & Funt, B. (2007). Quaternion color texture segmentation. Computer Vision and Image Understanding, 107(1–2), 88–96. · doi:10.1016/j.cviu.2006.11.014
[53] Shoemake, K. (1985). Animating rotation with quaternion curves. In SIGGRAPH’85: Proceedings of the 12th annual conference on computer graphics and interactive techniques (pp. 245–254). New York: ACM.
[54] Subakan, Ö. N., & Vemuri, B. C. (2008). Image segmentation via convolution of a level-set function with a Rigaut kernel. In IEEE conference on computer vision and pattern recognition, Anchorage, Alaska.
[55] Subakan, Ö. N., Jian, B., Vemuri, B. C., & Vallejos, C. E. (2007). Feature preserving image smoothing using a continuous mixture of tensors. In IEEE international conference on computer vision, Rio de Janeiro, Brazil.
[56] Tang, B., Sapiro, G., & Caselles, V. (2001). Color image enhancement via chromaticity diffusion. IEEE Transactions on Image Processing, 10(5), 701–707. · Zbl 1037.68792 · doi:10.1109/83.918563
[57] Tsai, A., Yezzi, A. J., Wells, W. I., Tempany, C., Tucker, D., Fan, A., Grimson, W., & Willsky, A. (2001). Model-based curve evolution technique for image segmentation. In IEEE conference on computer vision and pattern recognition (Vol. 1, pp. 463–468).
[58] Tschumperlé, D. (2006). Fast anisotropic smoothing of multi-valued images using curvature-preserving pde’s. International Journal of Computer Vision, 68(1), 65–82. · Zbl 1481.94031 · doi:10.1007/s11263-006-5631-z
[59] Tschumperlè, D. (2008). Greycstoration. Retrieved from http://cimg.sourceforge.net/greycstoration/ , May 2008.
[60] Weickert, J. (1997). Coherence-enhancing diffusion of colour images. In 7th national symposium on pattern recognition and image analysis (pp. 239–244).
[61] Zhu, S. C., & Yuille, A. (1996). Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(9), 884–900. · doi:10.1109/34.537343
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.