×

Continuation of equilibria and stability of slender elastic rods using an asymptotic numerical method. (English) Zbl 1294.74041

Summary: We present a theoretical and numerical framework to compute bifurcations of equilibria and stability of slender elastic rods. The 3D kinematics of the rod is treated in a geometrically exact way by parameterizing the position of the centerline and making use of quaternions to represent the orientation of the material frame. The equilibrium equations and the stability of their solutions are derived from the mechanical energy which takes into account the contributions due to internal moments (bending and twist), external forces and torques. Our use of quaternions allows for the equilibrium equations to be written in a quadratic form and solved efficiently with an asymptotic numerical continuation method. This finite element perturbation method gives interactive access to semi-analytical equilibrium branches, in contrast with the individual solution points obtained from classical minimization or predictor-corrector techniques. By way of example, we apply our numerics to address the specific problem of a naturally curved and heavy rod under extreme twisting and perform a detailed comparison against our own precision model experiments of this system. Excellent quantitative agreement is found between experiments and simulations for the underlying 3D buckling instabilities and the characterization of the resulting complex configurations. We believe that our framework is a powerful alternative to other methods for the computation of nonlinear equilibrium 3D shapes of rods in practical scenarios.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74H55 Stability of dynamical problems in solid mechanics

Software:

ManLab

References:

[1] Allgower, E. L.; Georg, K., Introduction to Numerical Continuation Methods, vol. 45 (2003), Society for Industrial Mathematics · Zbl 1036.65047
[2] Altmann, S. L., Rotations, Quaternions and Double Groups, vol. 3 (1986), Clarendon Press: Clarendon Press Oxford · Zbl 0683.20037
[4] Arribas, M.; Elipe, A.; Palacios, M., Quaternions and the rotation of a rigid body, Celestial Mech. Dynamical Astron., 96, 3, 239-251 (2006) · Zbl 1116.70013
[5] Audoly, B.; Pomeau, Y., Elasticity and GeometryFrom Hair Curls to the Nonlinear Response of Shells (2010), Oxford Press · Zbl 1223.74001
[6] Baguet, S.; Cochelin, B., On the behaviour of the ANM continuation in the presence of bifurcations, Commun. Numer. Methods Eng., 19, 6, 459-471 (2003) · Zbl 1022.65062
[7] Balaeff, A.; Mahadevan, L.; Schulten, K., Modeling DNA loops using the theory of elasticity, Phys. Rev. E, 73, 3, 031919 (2006)
[8] Bažant, Z. P.; Cedolin, L., Stability of StructuresElastic, Inelastic, Fracture and Damage Theories (2010), World Scientific Publishing Company Incorporated
[11] Champneys, A. R.; VanderHeijden, G. H.M.; Thompson, J. M.T., Spatially complex localization after one-twist-per-wave equilibria in twisted circular rods with initial curvature, Philos. Trans. R. Soc. London Ser. AMath. Phys. Eng. Sci., 355, 1732, 2151-2174 (1997) · Zbl 0902.73044
[12] Chou, J. C.K.; Kamel, M., Finding the position and orientation of a sensor on a robot manipulator using quaternions, Int. J. Robotics Res., 10, 3, 240-254 (1991)
[13] Cochelin, B., A path-following technique via an asymptotic-numerical method, Comput. Struct., 53, 5, 1181-1192 (1994) · Zbl 0918.73337
[14] Cochelin, B.; Damil, N.; Potier-Ferry, M., Asymptotic-numerical methods and Padé approximants for non-linear elastic structures, Int. J. Numer. Methods Eng., 37, 7, 1187-1213 (1994) · Zbl 0805.73076
[15] Coleman, B. D.; Swigon, D., Theory of supercoiled elastic rings with self-contact and its application to DNA plasmids, J. Elasticity, 60, 3, 173-221 (2000) · Zbl 1014.74038
[16] Crisfield, M. A., Nonlinear Finite Element Analysis of Solids and Structures. Essentials, vol. 1 (1991), Wiley: Wiley New York, NY (United States) · Zbl 0809.73005
[17] Dam, E. B.; Koch, M.; Lillholm, M., Quaternions, Interpolation and Animation (1998), Datalogisk Institut, Københavns Universitet
[18] Damil, N.; Potier-Ferry, M., A new method to compute perturbed bifurcationsapplication to the buckling of imperfect elastic structures, Int. J. Eng. Sci., 28, 9, 943-957 (1990) · Zbl 0721.73018
[19] Davies, M. A.; Moon, F. C., 3D spatial chaos in the elastica and the spinning top: Kirchhof analogy, Chaos, 3, 93 (1993) · Zbl 1055.37587
[20] Dichmann, D. J.; Li, Y.; Maddocks, J. H., Hamiltonian formulations and symmetries in rod mechanics, IMA Volumes Math. Appl., 82, 71-114 (1996) · Zbl 0864.92004
[21] Dill, E. H., Kirchhoff’s theory of rods, Arch. Hist. Exact Sci., 44, 1, 1-23 (1992) · Zbl 0762.01012
[22] Doedel, E. J., Autoa program for the automatic bifurcation analysis of autonomous systems, Congressus Numerantium, 30, 265-284 (1981) · Zbl 0511.65064
[23] Furrer, P. B.; Manning, R. S.; Maddocks, J. H., DNA rings with multiple energy minima, Biophys. J., 79, 1, 116-136 (2000)
[24] Goriely, A.; Tabor, M., Nonlinear dynamics of filaments. III. Instabilities of helical rods, Proc. R. Soc. London. Ser. AMath. Phys. Eng. Sci., 453, 1967, 2583-2601 (1997) · Zbl 0928.74052
[25] Goriely, A.; Tabor, M., Nonlinear dynamics of filaments I. Dynamical instabilities, Phys. DNonlinear Phenom., 105, 1, 20-44 (1997) · Zbl 0962.74513
[26] Goriely, A.; Tabor, M., Nonlinear dynamics of filaments II. Nonlinear analysis, Phys. DNonlinear Phenom., 105, 1, 45-61 (1997) · Zbl 0962.74514
[27] Goriely, A.; Tabor, M., Nonlinear dynamics of filaments. IV Spontaneous looping of twisted elastic rods, Proc. R. Soc. London Ser. AMath. Phys. Eng. Sci., 454, 1980, 3183-3202 (1998) · Zbl 0941.74028
[28] Goriely, A.; Tabor, M., Spontaneous helix hand reversal and tendril perversion in climbing plants, Phys. Rev. Lett., 80, 7, 1564-1567 (1998)
[29] Goss, V. G.A.; vanderHeijden, G. H.M.; Thompson, J. M.T.; Neukirch, s., Experiments on snap buckling, hysteresis and loop formation in twisted rods, Exp. Mech., 45, 2, 101-111 (2005)
[30] Goyal, S.; Perkins, N. C.; Lee, C. L., Non-linear dynamic intertwining of rods with self-contact, Int. J. Non-Linear Mech., 43, 1, 65-73 (2008) · Zbl 1203.74081
[31] Guckenheimer, J.; Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, vol. 42 (1983), Springer-Verlag: Springer-Verlag New York · Zbl 0515.34001
[33] Hamilton, S. W.R., Lectures on Quaternions (1853), Hodges and Smith
[34] Hanson, A. J., Visualizing Quaternions (2005), Morgan Kaufmann Pub
[35] Healey, T. J.; Mehta, P. G., Straightforward computation of spatial equilibria of geometrically exact cosserat rods, Int. J. Bifurcation Chaos Appl. Sci. Eng., 15, 3, 949-966 (2005) · Zbl 1081.74026
[36] Horn, B. K.P., Closed-form solution of absolute orientation using unit quaternions, J. Opt. Soc. Am. A, 4, 4, 629-642 (1987)
[38] Karkar, S.; Cochelin, B.; Vergez, C., A high-order, purely frequency based harmonic balance formulation for continuation of periodic solutionsthe case of non-polynomial nonlinearities, J. Sound Vib., 332, 4, 968-977 (2013)
[41] Kuipers, J. B., Quaternions and Rotation Sequences (1999), Princeton University Press: Princeton University Press Princeton, NJ, USA · Zbl 1053.70001
[42] Lazarus, A.; Thomas, O., A harmonic-based method for computing the stability of periodic solutions of dynamical systems, Comptes Rendus Mécanique, 338, 510-517 (2010) · Zbl 1223.37106
[43] Lazarus, A.; Barois, T.; Perisanu, S.; Poncharal, P.; Manneville, P.; deLangre, E.; Purcell, S. T.; Vincent, P.; Ayari, A., Simple modeling of self-oscillation in NEMS, Appl. Phys. Lett., 96, 193114 (2010)
[44] Lazarus, A.; de Langre, E.; Manneville, P.; Vincent, P.; Perisanu, S.; Ayari, A.; Purcell, S., Statics and dynamics of a nanowire in field emission, Int. J. Mech. Sci., 52, 11, 1396-1406 (2010)
[45] Levien, R., The ElasticaA Mathematical History (2008), Electrical Engineering and Computer Sciences University of California at Berkeley
[46] Liu, F. C.; Center, N. C.B., Kink Formation and Rotational Response of Single and Multistrand Electromechanical Cables (1975), Defense Technical Information Center
[47] Luenberger, D. G., Introduction to Linear and Nonlinear Programming (1973), Addison-Wesley Publishing Company · Zbl 0297.90044
[48] Luenberger, D. G.; Ye, Y., Linear Nonlinear Programming, vol. 116 (2008), Springer · Zbl 1207.90003
[49] Manning, R. S.; Rogers, K. A.; Maddocks, J. H., Isoperimetric conjugate points with application to the stability of DNA minicircles, Proc. R. Soc. London Ser. AMath. Phys. Eng. Sci., 454, 1980, 3047-3074 (1998) · Zbl 1002.92507
[50] Marko, J. F.; Neukirch, S., Competition between curls and plectonemes near the buckling transition of stretched supercoiled DNA, Phys. Rev. E, 85, 1, 011908 (2012)
[51] Neukirch, S.; VanderHeijden, G. H.M.; Thompson, J. M.T., Writhing instabilities of twisted rodsfrom infinite to finite length, J. Mech. Phys. Solids, 50, 6, 1175-1191 (2002) · Zbl 1027.74026
[52] Riks, E., An incremental approach to the solution of snapping and buckling problems, Int. J. Solids Struct., 15, 7, 529-551 (1979) · Zbl 0408.73040
[53] Spillmann, J.; Harders, M., Inextensible elastic rods with torsional friction based on lagrange multipliers, Comput. Animation Virtual Worlds, 21, 6, 561-572 (2010)
[54] Spillmann, J.; Teschner, M., Cosserat nets, IEEE Trans. Visualization Comput. Graphics, 15, 2, 325-338 (2009)
[55] Sun, Y.; Choi, W. M.; Jiang, H.; Huang, Y. Y.; Rogers, J. A., Controlled buckling of semiconductor nanoribbons for stretchable electronics, Nat. Nanotechnol., 1, 3, 201-207 (2006)
[56] Thompson, J. M.T.; Champneys, A. R., From helix to localized writhing in the torsional post-buckling of elastic rods, Proc. R. Soc. London Ser. AMath. Phys. Eng. Sci., 452, 1944, 117-138 (1996) · Zbl 0946.74025
[57] Tweed, D.; Cadera, W.; Vilis, T., Computing three-dimensional eye position quaternions and eye velocity from search coil signals, Vision Res., 30, 1, 97-110 (1990)
[58] VanderHeijden, G. H.M.; Thompson, J. M.T., Helical and localised buckling in twisted rodsa unified analysis of the symmetric case, Nonlinear Dyn., 21, 1, 71-99 (2000) · Zbl 0959.74022
[59] VanderHeijden, G. H.M.; Neukirch, S.; Goss, V. G.A.; Thompson, J. M.T., Instability and self-contact phenomena in the writhing of clamped rods, Int. J. Mech. Sci., 45, 1, 161-196 (2003) · Zbl 1051.74571
[60] Vannucci, P.; Cochelin, B.; Damil, N.; Potier-Ferry, M., An asymptotic-numerical method to compute bifurcating branches, Int. J. Numer. Methods Eng., 41, 8, 1365-1389 (1998) · Zbl 0911.73078
[61] Waldvogel, J., Quaternions for regularizing celestial mechanics: the right way, Celestial Mech. Dyn. Astron., 102, 1, 149-162 (2008) · Zbl 1154.70309
[62] Wang, M.; Alexander-Katz, A.; Olsen, B. D., Diffusion of entangled rod-coil block copolymers, ACS Macro Lett., 1, 6, 676-680 (2012)
[63] Wicks, N.; Wardle, B. L.; Pafitis, D., Horizontal cylinder-in-cylinder buckling under compression and torsionreview and application to composite drill pipe, Int. J. Mech. Sci., 50, 3, 538-549 (2008) · Zbl 1264.74069
[64] Yabuta, T., Submarine cable kink analysis, Bull. JSME, 27, 231, 1821-1828 (1984)
[65] Zahrouni, H.; Cochelin, B.; Potier-Ferry, M., Computing finite rotations of shells by an asymptotic-numerical method, Comput. Methods Appl. Mech. Eng., 175, 1, 71-85 (1999) · Zbl 0963.74035
[66] Zienkiewicz, O. C.; Taylor, R. L.; Zhu, J. Z., The Finite Element MethodIts Basis and Fundamentals, vol. 1 (2005), Butterworth-Heinemann · Zbl 1084.74001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.