×

A fully-actuated quadcopter representation using quaternions. (English) Zbl 1530.93311

Summary: Recent advances in practical fields like robotics and the miniaturisation of many sensors and actuators have turned autonomous vehicles into a reality. These systems come in many shapes and forms depending on the medium and their design but can be classified in one of two categories according to their mechanical configuration and number of actuators: fully-actuated and under-actuated vehicles; the second group still poses many challenges for the automatic control and robotics communities. This work introduces an easy methodology, based on quaternions, for designing controllers for a class of under-actuated systems, such as multicopter vehicles. The methodology starts from a fully-actuated representation of the system and adapts it to be implemented in under-actuated systems. In addition, it allows the easy development of controllers without taking care the coupled dynamics of the system. The proposed approach is based on Lyapunov’s stability theory and is proven for certain criteria of the system’s dynamics. The quadcopter configuration is used to validate the proposed methodology in simulations and in experimental tests.
Abbreviations: AGV: autonomous ground vehicle; AUV: autonomous underwater vehicle; DoF: degree(s) of freedom; ESC: energy shaping controller; SFC: statefeedback controller; SSC: separated saturations controller; UAV: unmanned aerial vehicle

MSC:

93C85 Automated systems (robots, etc.) in control theory
11R52 Quaternion and other division algebras: arithmetic, zeta functions

References:

[1] Ahmad, F.; Kumar, P.; Bhandari, A.; Patil, P. P., Simulation of the quadcopter dynamics with LQR based control, Materials Today: Proceedings, 24, Part 2, 326-332 (2020) · doi:10.1016/j.matpr.2020.04.282
[2] Alatorre, A. G.; Castillo, P.; Mondié, S., Saturations-based nonlinear controllers with integral term: validation in real-time, International Journal of Control, 89, 5, 879-891 (2016) · Zbl 1338.93281 · doi:10.1080/00207179.2015.1104553
[3] Altmann, S. L., Hamilton, rodrigues, and the quaternion scandal, Mathematics Magazine, 62, 5, 291-308 (1989) · Zbl 0704.01009 · doi:10.1080/0025570X.1989.11977459
[4] Antonio-Toledo, M. E.; Sanchez, E. N.; Alanis, A. Y.; Flórez, J.; Perez-Cisneros, M. A., Real-time integral backstepping with sliding mode control for a quadrotor UAV, IFAC-PapersOnLine, 51, 13, 549-554 (2018) · doi:10.1016/j.ifacol.2018.07.337
[5] Ariyibi, S. O.; Tekinalp, O., Quaternion-based nonlinear attitude control of quadrotor formations carrying a slung load, Aerospace Science and Technology, 105, October, Article 105995 (2020) · doi:10.1016/j.ast.2020.105995
[6] Brogliato, B., Maschke, B., Lozano, R., & Egeland, O. (2007). Passivity-based control. In Dissipative systems analysis and control: Theory and applications (pp. 373-434). Springer London. · Zbl 1121.93002
[7] Campa, R., & Camarillo, K. (2008). Unit quaternions: A mathematical tool for modeling, path planning and control of robot manipulators. In M. Ceccarelli (Ed.), Robot manipulators (pp. 21-48). IntechOpen. .
[8] Castillo, P.; Dzul, A.; Lozano, R., Real-time stabilization and tracking of a four-rotor mini rotorcraft, IEEE Transactions on Control Systems Technology, 12, 4, 510-516 (2004) · doi:10.1109/TCST.2004.825052
[9] Colmenares-Vázquez, J.; Marchand, N.; Castillo, P.; Gómez-Balderas, J. E., An intermediary quaternion-based control for trajectory following using a quadrotor, 5965-5970 (2017)
[10] El-Badawy, A. A.; Bakr, M. A., Quadcopter aggressive maneuvers along singular configurations: an energy-Quaternion based approach, Journal of Control Science and Engineering, 2016, January, Article 7324540 (201618) · Zbl 1331.93163
[11] Fritsch, O.; Tromba, D.; Lohmann, B., Cascaded energybased trajectory tracking control of a quadrotor, Automatisierungstechnik, 62, 6, 408-422 (2014) · doi:10.1515/auto-2013-1063
[12] Goldstein, H.; Poole, C.; Safko, J., Classical mechanics (2002), Addison Wesley
[13] Hancock, P. A.; Nourbakhsh, I.; Stewart, J., On the future of transportation in an era of automated and autonomous vehicles, Proceedings of the National Academy of Sciences, 116, 16, 7684-7691 (2019) · doi:10.1073/pnas.1805770115
[14] Islam, M.; Okasha, M., A comparative study of PD, LQR and MPC on quadrotor using quaternion approach (2019)
[15] Islam, M.; Okasha, M.; Idres, M.; Mansor, H., Trajectory tracking of quaternion based quadrotor using model predictive control, International Journal of Engineering and Technology(UAE), 7, 4-13, 125-136 (2018) · doi:10.14419/ijet.v7i4.13.21343
[16] Kalman, D., The axis of a rotation: analysis, algebra, geometry, Mathematics Magazine, 62, 4, 248-252 (1989) · Zbl 0686.15002 · doi:10.1080/0025570X.1989.11977446
[17] Kopelias, P.; Demiridi, E.; Vogiatzis, K.; Skabardonis, A.; Zafiropoulou, V., Connected & autonomous vehicles – environmental impacts - A review, Science of The Total Environment, 712, April, Article 135237 (2020) · doi:10.1016/j.scitotenv.2019.135237
[18] Kottenstette, N.; Porter, J., Digital passive attitude and altitude control schemes for quadrotor aircraft (2009)
[19] Kuipers, J. B., Quaternions and rotation sequences, 66 (1999), Princeton university press Princeton · Zbl 1053.70001
[20] Kumar, R.; Bhargavapuri, M.; Deshpande, A. M.; Sridhar, S.; Cohen, K.; Kumar, M., Quaternion feedback based autonomous control of a quadcopter UAV with thrust vectoring rotors (2020)
[21] Labbadi, M.; Cherkaoui, M., Robust adaptive backstepping fast terminal sliding mode controller for uncertain quadrotor UAV, Aerospace Science and Technology, 93, October, Article 105306 (2019) · doi:10.1016/j.ast.2019.105306
[22] Lees-Miller, J. D.; Hammersley, J. C.; Wilson, R. E., Theoreticalmaximum capacity as benchmark for empty vehicle redistribution in personal rapid transit, Transportation Research Record, 2146, 1, 76-83 (2010) · doi:10.3141/2146-10
[23] Li, S.; Sui, P. C.; Xiao, J.; Chahine, R., Policy formulation for highly automated vehicles: Emerging importance, research frontiers and insights, Transportation Research Part A: Policy and Practice, 124, June, 573-586 (2019) · doi:10.1016/j.tra.2018.05.010
[24] Lu, Q.; Ren, B.; Parameswaran, S., Uncertainty and disturbanceestimator-based global trajectory tracking control for a quadrotor, IEEE/ASME Transactions on Mechatronics, 25, 3, 1519-1530 (2020) · doi:10.1109/TMECH.2020.2978529
[25] Markley, F. L., Fast quaternion attitude estimation from two vectormeasurements, Journal of Guidance, Control, and Dynamics, 25, 2, 411-414 (2002) · doi:10.2514/2.4897
[26] Morais, J. P., Georgiev, S., & Sprößig, W. (2014a). Exponents and logarithms. In Real quaternionic calculus handbook (pp. 87-105). Springer Basel.
[27] Morais, J. P., Georgiev, S., & Sprößig, W. (2014b). Quaternions and spatial rotation. In Real quaternionic calculus handbook (pp. 35-51). Springer Basel.
[28] Muñoz, L. E.; Santos, O.; Castillo, P.; Fantoni, I., Energy-based nonlinear control for a quadrotor rotorcraft (2013)
[29] Pratama, B., Muis, A., Subiantoro, A., Djemai, M., & Ben Atitallah, R. (2018, October 1). Quadcopter trajectory tracking and attitude control based on euler angle limitation. In D. Arisoy, S. Engin, and M. Oz (Eds.), 2018 6th international conference on control engineering and information technology, CEIT 2018. Institute of Electrical and Electronics Engineers Inc. (6th International Conference on Control Engineering and Information Technology, CEIT 2018; Conference date: 25-10-2018 Through 27-10-2018).
[30] Sanahuja, G. (2016). Fl-air – framework libre air. Retrieved April 19, 2021, from https://devel.hds.utc.fr/software/flair.
[31] Shastry, A. K.; Bhargavapuri, M. T.; Kothari, M.; Sahoo, S. R., Quaternion based adaptive control for package delivery using variable-pitch quadrotors, 340-345 (2018)
[32] Shuster, M. D., Survey of attitude representations, Journal of the Astronautical Sciences, 41, 4, 439-517 (1993)
[33] Souza, C.; Raffo, G.; Castelan, E., Passivity based control of a quadrotor UAV, IFAC Proceedings Volumes, 47, 3, 3196-3201 (2014) · doi:10.3182/20140824-6-ZA-1003.02335
[34] Xie, H.; Lynch, A. F., Input saturated visual servoing for unmannedaerial vehicles, IEEE/ASME Transactions on Mechatronics, 22, 2, 952-960 (2017) · doi:10.1109/TMECH.2016.2608862
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.