×

Geometric characterization of the workspace of non-orthogonal rotation axes. (English) Zbl 1304.70003

Summary: In this article, a novel characterization of the workspace of 3R chains with non-orthogonal, intersecting axes is derived by describing the set of singular orientations as two tori that separate two-solvable from non-solvable orientations within \(SO(3)\). Therefore, the tori provide the boundary of the workspace of the axes’ constellation.{ }The derived characterization generalizes a recent result obtained by Piovan and Bullo. It is based on a specific, novel representation of rotations, called unit ball representation, which allows to interpret the workspace characterization with ease.{ }In an appendix, tools for dealing with angles and rotations are introduced and the equivalence of unit quaternion representation and unit ball representation is described.

MSC:

70B10 Kinematics of a rigid body
22E70 Applications of Lie groups to the sciences; explicit representations
15A16 Matrix exponential and similar functions of matrices
Full Text: DOI

References:

[1] B. Alpern, Orientation maps: Techniques for visualizing rotations (a consumer’s guide),, in VIS ’93: Proceedings of the 4th conference on Visualization, 183 (1993)
[2] S. Bai, A unified input-output analysis of four-bar linkages,, Mechanism and Machine Theory, 43, 240 (2008) · Zbl 1169.70003 · doi:10.1016/j.mechmachtheory.2007.01.002
[3] O. A. Bauchau, The Vectorial Parameterization of Rotation,, Nonlinear Dynamics, 32, 71 (2003) · Zbl 1062.70505 · doi:10.1023/A:1024265401576
[4] B. Bongardt, <em>Sheth-Uicker Convention Revisited - A Normal Form for Specifying Mechanisms</em>,, Technical report (2012)
[5] P. B. Davenport, Rotations about nonorthogonal axes,, AIAA Journal, 11, 853 (1973) · Zbl 0262.70003
[6] L. Dorst, <em>Geometric Algebra - An Object-Oriented Approach to Geometry</em>,, Morgan Kaufmann Series in Computer Graphics (2007)
[7] F. Freudenstein, Approximate synthesis of four-bar linkages,, Transaction ASME, 77, 853 (1955)
[8] K. C. Gupta, Kinematic analysis of manipulators using the zero reference position description,, International Journal of Robotics Research, 5, 5 (1986) · doi:10.1177/027836498600500202
[9] A. J. Hanson, <em>Visualizing Quaternions</em>,, Morgan Kaufmann (2007) · doi:10.1145/1281500.1281634
[10] M. J. D. Hayes, The effect of data-set cardinality on the design and structural errors of four-bar function-generators,, in 10th World Congress on the Theory of Machines and Mechanisms, 437 (1999)
[11] M. Husty, A Geometrical characterization of workspace singularities in 3r manipulators,, in Advances in Robot Kinematics: Analysis and Design, 411 (2008) · doi:10.1007/978-1-4020-8600-7_43
[12] M. L. Husty, A new and efficient algorithm for the inverse kinematics of a general serial 6R manipulator,, Mechanism and Machine Theory, 42, 66 (2007) · Zbl 1116.70010 · doi:10.1016/j.mechmachtheory.2006.02.001
[13] F. Klein, <em>Elementary Mathematics from an Advanced Standpoint: Arithmetic, Algebra, Analysis</em>,, 1932. · Zbl 0006.24301
[14] J. B. Kuipers, <em>Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace and Virtual Reality</em>,, Princeton University Press (2002) · Zbl 0917.15004
[15] Z. Liu, Least-square optimization of planar and spherical four-bar function generator under mobility constraints,, Journal of Mechanical Design, 114, 569 (1992) · doi:10.1115/1.2917045
[16] C. D. Mladenova, Vector decomposition of finite rotations,, Reports on Mathematical Physics, 68, 107 (2011) · Zbl 1241.70012 · doi:10.1016/S0034-4877(11)60030-X
[17] R. M. Murray, <em>A Mathematical Introduction to Robotic Manipulation</em>,, CRC Press (1994) · Zbl 0858.70001
[18] R. P. Paul, Kinematics of robot wrists,, International Journal of Robotics Research, 2, 31 (1983) · doi:10.1177/027836498300200103
[19] M. Pfurner, <em>Analysis of Spatial Serial Manipulators Using Kinematic Mapping</em>,, PhD thesis (2006)
[20] G. Piovan, On coordinate-free rotation decomposition: Euler angles about arbitrary axes,, IEEE Transactions on Robotics, 28, 728 (2012) · doi:10.1109/TRO.2012.2184951
[21] J. M. Selig, <em>Geometric Fundamentals of Robotics, 2nd ed.</em>,, Springer (2005) · Zbl 1062.93002
[22] J. R. Shewchuk, <em>Lecture Notes on Geometric Robustness</em>,, 2009.
[23] M. D. Shuster, Generalization of the euler angles,, The Journal of the Astronautical Sciences, 51, 123 (2003)
[24] J. Stillwell, <em>Naive Lie Theory</em>,, Undergraduate Texts in Mathematics (2008) · Zbl 1143.22001 · doi:10.1007/978-0-387-78214-0
[25] A. T. Yang, Application of dual-number quaternion algebra to the analysis of spatial mechanisms,, Journal of Applied Mechanics, 31, 300 (1964) · Zbl 0143.22802 · doi:10.1115/1.3629601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.