×

Orbital perturbations due to massive rings. (English) Zbl 1255.85011

Summary: We analytically work out the long-term orbital perturbations induced by a homogeneous circular ring of radius \(R_r\) and mass \(m_r\) on the motion of a test particle in the cases (I): \(r>R_r\) and (II): \(r<R_r\). In order to extend the validity of our analysis to the orbital configurations of, e.g., some proposed spacecraft-based mission for fundamental physics like LISA and ASTROD, of possible annuli around the supermassive black hole in Sgr A* coming from tidal disruptions of incoming gas clouds, and to the effect of artificial space debris belts around the Earth, we do not restrict ourselves to the case in which the ring and the orbit of the perturbed particle lie just in the same plane. From the corrections \(\Delta\dot\varpi^{(\mathrm {meas})}\) to the standard secular perihelion precessions, recently determined by a team of astronomers for some planets of the Solar System, we infer upper bounds on \(m_r\) for various putative and known annular matter distributions of natural origin (close circumsolar ring with \(R_r = 0.02 - 0.13\) au, dust ring with \(R_r= 1\) au, minor asteroids, Trans-Neptunian Objects). We find \(m_{\mathrm r}\leq 1.4\times 10^{-4}\, m_{\oplus}\) (circumsolar ring with \(R_r = 0.02\) au), \(m_{\mathrm r}\leq 2.6\times 10^{-6}\, m_{\oplus}\) (circumsolar ring with \(R_r= 0.13\) au), \(m_{\mathrm r}\leq 8.8\times 10^{-7}\, m_{\oplus}\) (ring with \(R_r = 1\) au), \(m_{\mathrm r}\leq 7.3\times 10^{-12}\, M_{\odot}\) (asteroidal ring with \(R_r = 2.80\) au), \(m_{\mathrm r}\leq 1.1\times 10^{-11}\, M_{\odot}\) (asteroidal ring with \(R_r = 3.14\) au), \(m_{\mathrm r}\leq 2.0\times 10^{-8}\, M_{\odot}\) (TNOs ring with \(R_r = 43\) au). In principle, our analysis is valid both for baryonic and non-baryonic Dark Matter distributions.

MSC:

85A05 Galactic and stellar dynamics
70F15 Celestial mechanics
83C10 Equations of motion in general relativity and gravitational theory
83C25 Approximation procedures, weak fields in general relativity and gravitational theory

References:

[1] M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing edn. (Dover, New York, 1972) · Zbl 0543.33001
[2] Z. Ahmed, D. Akerib, S. Arrenberg, C. Bailey, D. Balakishiyeva, L. Baudis, D. Bauer, P. Brink, T. Bruch, R. Bunker, B. Cabrera, D. Caldwell, J. Cooley, P. Cushman, M. Daal, F. DeJongh, M. Dragowsky, L. Duong, S. Fallows, E. Figueroa-Feliciano, J. Filippini, M. Fritts, S. Golwala, D. Grant, J. Hall, R. Hennings-Yeomans, S. Hertel, D. Holmgren, L. Hsu, M. Huber, O. Kamaev, M. Kiveni, M. Kos, S. Leman, R. Mahapatra, V. Mandic, K. McCarthy, N. Mirabolfathi, D. Moore, H. Nelson, R. Ogburn, A. Phipps, M. Pyle, X. Qiu, E. Ramberg, W. Rau, A. Reisetter, T. Saab, B. Sadoulet, J. Sander, R. Schnee, D. Seitz, B. Serfass, K. Sundqvist, M. Tarka, P. Wikus, S. Yellin, J. Yoo, B. Young, J. Zhang, Dark matter search results from the cdms ii experiment. Science 327(5973), 1619–1621 (2010) · doi:10.1126/science.1186112
[3] D.S. Akerib, J. Alvaro-Dean, M.S. Armel, M.J. Attisha, L. Baudis, D.A. Bauer, A.I. Bolozdynya, P.L. Brink, R. Bunker, B. Cabrera, D.O. Caldwell, J.P. Castle, C.L. Chang, R.M. Clarke, M.B. Crisler, P. Cushman, A.K. Davies, R. Dixon, D.D. Driscoll, L. Duong, J. Emes, R. Ferril, R.J. Gaitskell, S.R. Golwala, M. Haldeman, J. Hellmig, M. Hennessey, D. Holmgren, M.E. Huber, S. Kamat, M. Kurylowicz, A. Lu, R. Mahapatra, V. Mandic, J.M. Martinis, P. Meunier, N. Mirabolfathi, S.W. Nam, H. Nelson, R. Nelson, R.W. Ogburn, J. Perales, T.A. Perera, M.C. Perillo Isaac, W. Rau, A. Reisetter, R.R. Ross, T. Saab, B. Sadoulet, J. Sander, C. Savage, R.W. Schnee, D.N. Seitz, T.A. Shutt, G. Smith, A.L. Spadafora, J.-P.F. Thompson, A. Tomada, G. Wang, S. Yellin, B.A. Young, New results from the cryogenic dark matter search experiment. Phys. Rev. D 68(8), 082002 (2003) · doi:10.1103/PhysRevD.68.082002
[4] A. Alberti, C. Vidal, Dynamics of a particle in a gravitational field of a homogeneous annulus disk celestial mechanics and dynamical astronomy. Celest. Mech. Dyn. Astron. 98(2), 75–93 (2007) · Zbl 1330.70071 · doi:10.1007/s10569-007-9071-z
[5] J.D. Anderson, P.A. Laing, E.L. Lau, A.S. Liu, M.M. Nieto, S.G. Turyshev, Study of the anomalous acceleration of pioneer 10 and 11. Phys. Rev. D 65(8), 082004 (2002) · Zbl 1049.70578 · doi:10.1103/PhysRevD.65.082004
[6] J. Angle, E. Aprile, F. Arneodo, L. Baudis, A. Bernstein, A. Bolozdynya, L.C.C. Coelho, C.E. Dahl, L. Deviveiros, A.D. Ferella, L.M.P. Fernandes, S. Fiorucci, R.J. Gaitskell, K.L. Giboni, R. Gomez, R. Hasty, L. Kastens, J. Kwong, J.A.M. Lopes, N. Madden, A. Manalaysay, A. Manzur, D.N. McKinsey, M.E. Monzani, K. Ni, U. Oberlack, J. Orboeck, G. Plante, R. Santorelli, J.M.F. Dos Santos, P. Shagin, T. Shutt, P. Sorensen, S. Schulte, C. Winant, M. Yamashita, Constraints on inelastic dark matter from xenon10. Phys. Rev. D 80(11), 115005 (2009) · doi:10.1103/PhysRevD.80.115005
[7] L. Anselmo, C. Pardini, Collision risk mitigation in geostationary orbit. Space Debris 2(2), 67–82 (2002) · doi:10.1023/A:1021255523174
[8] M. Ansorg, D. Petroff, Black holes surrounded by uniformly rotating rings. Phys. Rev. D 72(2), 024019 (2005) · doi:10.1103/PhysRevD.72.024019
[9] M. Ansorg, A. Kleinwächter, R. Meinel, Uniformly rotating axisymmetric fluid configurations bifurcating from highly flattened maclaurin spheroids. Mon. Not. R. Astron. Soc. 339(2), 515–523 (2003a) · doi:10.1046/j.1365-8711.2003.06190.x
[10] M. Ansorg, A. Kleinwächter, R. Meinel, Relativistic dyson rings and their black hole limit. Astrophys. J. Lett. 582(2), L87–L90 (2003b) · doi:10.1086/367632
[11] P.D. Anz-Meador, M.J. Matney, D.J. Kessler, Physical properties of orbital debris and orbital debris clouds. Adv. Space Res. 16(11), 113–117 (1995) · doi:10.1016/0273-1177(95)98760-L
[12] C. Azevêdo, P. Ontaneda, On the existence of periodic orbits for the fixed homogeneous circle problem. J. Differ. Equ. 235(2), 341–365 (2007) · Zbl 1123.34034 · doi:10.1016/j.jde.2006.12.012
[13] C. Azevêdo, H.E. Cabral, P. Ontaneda, On the fixed homogeneous circle problem. Adv. Nonlinear Stud. 7(1), 47–75 (2007) · Zbl 1121.70013
[14] M.J.S. Belton, Dynamics of interplanetary dust. Science 151(3706), 35–44 (1966) · doi:10.1126/science.151.3706.35
[15] M.J.S. Belton, Dynamics of interplanetary dust particles near the sun, in The Zodiacal Light and the Interplanetary Medium, ed. by J.L. Weinberg, H.M. Mann, no. 150 in NASA Special Publication, National Technical Information Service (Springfield, Virginia, 1967), p. 301
[16] R. Bernabei, P. Belli, F. Cappella, R. Cerulli, F. Montechia, F. Nozzoli, A. Incicchitti, D. Prosperi, C.J. Dai, H.H. Kuang, J.M. Ma, Z.P. Ye, Dark matter search. Rivista Nuovo Cimento 26(1), 1–74 (2003) · Zbl 1092.83511
[17] R. Bernabei, P. Belli, A. Bussolotti, F. Cappella, R. Cerulli, C.J. Dai, A. D’Angelo, H.L. He, A. Incicchitti, H.H. Kuang, J.M. Ma, A. Mattei, F. Montecchia, F. Nozzoli, D. Prosperi, X.D. Sheng, Z.P. Ye, The dama/libra apparatus. Nucl. Instrum. Methods Phys. Res. Sect. A 592(3), 297–315 (2008) · doi:10.1016/j.nima.2008.04.082
[18] O. Bertolami, P. Vieira, Pioneer anomaly and the kuiper belt mass distribution. Class. Quantum Gravity 23(14), 4625–4635 (2006) · Zbl 1131.85300 · doi:10.1088/0264-9381/23/14/005
[19] G. Bertone, D. Hooper, J. Silk, Particle dark matter: evidence, candidates and constraints. Phys. Rep. 405(5–6), 279–390 (2005) · doi:10.1016/j.physrep.2004.08.031
[20] S.I. Blinnikov, M.Y. Khlopov, Possible astronomical effects of mirror particles. Sov. Astron. 27(4), 371–375 (1983)
[21] N.W. Boggess, J.C. Mather, R. Weiss, C.L. Bennett, E.S. Cheng, E. Dwek, S. Gulkis, M.G. Hauser, M.A. Janssen, T. Kelsall, S.S. Meyer, S.H. Moseley, T.L. Murdock, R.A. Shafer, R.F. Silverberg, G.F. Smoot, D.T. Wilkinson, E.L. Wright, The cobe mission-its design and performance two years after launch. Astrophys. J. 397(2), 420–429 (1992) · doi:10.1086/171797
[22] A. Bosma, 21-cm line studies of spiral galaxies. i-observations of the galaxies ngc 5033, 3198, 5055, 2841, and 7331. ii-the distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types. Astron. J. 86(12), 1791–1846 (1981) · doi:10.1086/113062
[23] K. Brecher, A. Brecher, P. Morrison, I. Wasserman, Is there a ring around the sun? Nature 282, 50–52 (1979) · doi:10.1038/282050a0
[24] R.A. Broucke, A. Elipe, The dynamics of orbits in a potential field of a solid circular ring. Regul. Chaotic Dyn. 10(2), 129–143 (2005) · Zbl 1128.70308 · doi:10.1070/RD2005v010n02ABEH000307
[25] G.E. Brueckner, R.A. Howard, M.J. Koomen, C.M. Korendyke, D.J. Michels, J.D. Moses, D.G. Socker, K.P. Dere, P.L. Lamy, A. Llebaria, M.V. Bout, R. Schwenn, G.M. Simnett, D.K. Bedford, C.J. Eyles, The large angle spectroscopic coronagraph (lasco). Sol. Phys. 162(1–2), 357–402 (1995) · doi:10.1007/BF00733434
[26] B. Carry, C. Dumas, M. Fulchignoni, W.J. Merline, J. Berthier, D. Hestroffer, T. Fusco, P. Tamblyn, Near-infrared mapping and physical properties of the dwarf-planet ceres. Astron. Astrophys. 478(1), 235–244 (2008) · doi:10.1051/0004-6361:20078166
[27] W.A. Chiu, X. Fan, J.P. Ostriker, Combining wilkinson microwave anisotropy probe and sloan digital sky survey quasar data on reionization constrains cosmological parameters and star formation efficiency. Astrophys. J. 599(2), 759–772 (2003) · doi:10.1086/379318
[28] P. Ciarcelluti, Cosmology with mirror dark matter. Int. J. Modern Phys. D 19(14), 2151–2230 (2010) · Zbl 1213.83005 · doi:10.1142/S0218271810018438
[29] L. Ciotti, G. Giampieri, Exact density-potential pairs from the holomorphic coulomb field. Mon. Not. R. Astron. Soc. 376(3), 1162–1168 (2007) · doi:10.1111/j.1365-2966.2007.11497.x
[30] L. Ciotti, F. Marinacci, Exact density-potential pairs from complex-shifted axisymmetric systems. Mon. Not. R. Astron. Soc. 387(3), 1117–1125 (2008) · doi:10.1111/j.1365-2966.2008.13301.x
[31] S. Coleman, Q-balls. Nucl. Phys. B 262(2), 263–283 (1985) · doi:10.1016/0550-3213(85)90286-X
[32] H.C. Courten, Neue sonnennahe planetoiden. Umschau Wiss. Tech. 72, 562 (1972)
[33] D.T. Cumberbatch, J. Silk, G.D. Starkman, Difficulties in explaining the cosmic photon excess with compact composite object dark matter. Phys. Rev. D 77(6), 063522 (2008) · doi:10.1103/PhysRevD.77.063522
[34] T. Damour, L.M. Krauss, A new solar system dark matter population of weakly interacting massive particles. Phys. Rev. Lett. 81(26), 5726–5729 (1998) · doi:10.1103/PhysRevLett.81.5726
[35] T. Damour, L.M. Krauss, New wimp population in the solar system and new signals for dark-matter detectors. Phys. Rev. D 59(6), 063509 (1999) · doi:10.1103/PhysRevD.59.063509
[36] C. Debi Prasad, Variability of circumsolar dust ring. Sol. Phys. 159(1), 181–190 (1995) · doi:10.1007/BF00733041
[37] de J.A. Diego, D. Núñez, J. Zavala, Pioneer anomaly? Gravitational pull due to the kuiper belt. Int. J. Modern Phys. D 15(4), 533–544 (2006) · Zbl 1125.85309 · doi:10.1142/S0218271806008279
[38] P.T. de Zeeuw, R. Hoogerwerf, J.H.J. de Bruijne, A.G.A. Brown, A. Blaauw, A hipparcos census of the nearby ob associations. Astron. J. 117(1), 354–399 (1999) · doi:10.1086/300682
[39] S.F. Dermott, S. Jayraraman, Y.L. Xu, B.Å.S. Gustafson, J.C. Liou, A circumsolar ring of asteroidal dust in resonant lock with the earth. Nature 369(6483), 719–723 (1994) · doi:10.1038/369719a0
[40] U.D. Desai, Morphological study of the time histories of gamma-ray bursts. Astrophys. Space Sci. 75(1), 15–20 (1981) · doi:10.1007/BF00651380
[41] C. Dietl, L. Labun, J. Rafelski, Properties of gravitationally bound dark compact ultra dense objects. Phys. Lett. B (2012)
[42] V. Domingo, B. Fleck, A.I. Poland, The soho mission: an overview. Sol. Phys. 162(1–2), 1–37 (1995) · doi:10.1007/BF00733425
[43] P. Dong, W.-T. Ni, Spacecraft gravitational wave detectors. Int. J. Modern Phys. D 20(10), 2057–2062 (2011) · doi:10.1142/S0218271811020172
[44] S.L. Drell, H.M. Foley, M.A. Ruderman, Drag and propulsion of large satellites in the ionosphere: an alfvén propulsion engine in space. J. Geophys. Res. 70(13), 3131–3145 (1965) · doi:10.1029/JZ070i013p03131
[45] D.D. Durda, S.A. Stern, W.B. Colwell, J.W. Parker, H.F. Levison, D.M. Hassler, A new observational search for vulcanoids in soho/lasco coronagraph images. Icarus 148(1), 312–315 (2000) · doi:10.1006/icar.2000.6520
[46] F.W. Dyson, The potential of an anchor ring. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 184, 43–95 (1893a) · JFM 25.1514.01 · doi:10.1098/rsta.1893.0002
[47] F.W. Dyson, The potential of an anchor ring. part ii. Philos. Trans. R. Soc. Lond. A 184, 1041–1106 (1893b) · JFM 25.1514.01 · doi:10.1098/rsta.1893.0020
[48] D.H. Eckhardt, J.L.G. Pestaña, Technique for modeling the gravitational field of a galactic disk. Astrophys. J. 572(2), L135–L137 (2002) · doi:10.1086/341745
[49] K.E. Edgeworth, The evolution of our planetary system. J. Br. Astronom. Assoc. 53, 181–188 (1943)
[50] J. Edsjö, A.H.G. Peter, Comments on recent work on dark-matter capture in the solar system (2010).arXiv: 1004.5258 [astro- ph.EP]
[51] A. Einstein, Erklärung der perihelbewegung des merkur aus der allgemeinen relativitätstheorie. Sitzungsberichte der Preußischen Akademie der Wissenschaften 47, 831–839 (1915) · JFM 45.1120.01
[52] J.L. Elliot, E. Dunham, D. Mink, The rings of uranus. Nature 267, 328–330 (1977) · doi:10.1038/267328a0
[53] N.W. Evans, S. Tabachnik, Possible long-lived asteroid belts in the inner solar system. Nature 399(6731), 41–43 (1999) · doi:10.1038/19919
[54] J.E. Faller , P.L. Bender, A possible laser gravitational wave experiment in space, in Precision Measurement and Fundamental Constants II, vol. 617 of National Bureau of Standards Special Publication, ed. by B.N. Taylor, W.D. Phillips (National Bureau of Standards, United States, 1984), pp. 689–690
[55] J.E. Faller, P.L. Bender, J.L. Hall, D. Hils, M.A. Vincent, in Space Antenna for Gravitational Wave Astronomy, ed. by N. Longdon, O. Melita. Proceedings of the Colloquium ”Kilometric Optical Arrays in Space. Cargèse (Corsica) 23–25 October 1984, vol. 226 (ESA Special Publication, 1985), pp. 157–163
[56] J. Fernandez, On the existence of a comet belt beyond neptune. Mon. Not. R. Astron. Soc. 192, 481–491 (1980)
[57] A. Fienga, J.-L. Simon, Analytical and numerical studies of asteroid perturbations on solar system planet dynamics. Astron. Astrophys. 429(1), 361–367 (2005) · doi:10.1051/0004-6361:20048159
[58] A. Fienga, A. Manche, J. Laskar, M. Gastineau, Inpop06: a new numerical planetary ephemeris. Astron. Astrophys. 477(1), 315–327 (2008) · doi:10.1051/0004-6361:20066607
[59] A. Fienga, J. Laskar, T. Morley, H. Manche, P. Kuchynka, C. Le Poncin-Lafitte, F. Budnik, M. Gastineau, L. Somenzi, Inpop08, a 4-d planetary ephemeris: from asteroid and time-scale computations to esa mars express and venus express contributions. Astron. Astrophys. 507(3), 1675–1686 (2009) · doi:10.1051/0004-6361/200911755
[60] A. Fienga, J. Laskar, P. Kuchynka, H. Manche, G. Desvignes, M. Gastineau, I. Cognard, G. Theureau, The inpop10a planetary ephemeris and its applications in fundamental physics. Celest. Mech. Dyn. Astron. 111(3), 363–385 (2011) · doi:10.1007/s10569-011-9377-8
[61] T. Fischer, S. Horatschek, M. Ansorg, Uniformly rotating rings in general relativity. Mon. Not. R. Astron. Soc. 364(3), 943–947 (2005) · doi:10.1111/j.1365-2966.2005.09629.x
[62] W. Flury, The space debris environment of the earth. Earth Moon Planet. 70(1–3), 79–91 (1995) · doi:10.1007/BF00619453
[63] R. Foot, The mirror world interpretation of the 1908 tunguska event and other more recent events. Acta Phys. Pol. B 32(10), 3133–3146 (2001)
[64] R. Foot, Shadowlands: Quest For Mirror Matter In The Universe. (Universal Publishers, Parkland, 2002)
[65] R. Foot, Mirror matter-type dark matter. Int. J. Modern Phys. D 13(10), 2161–2192 (2004) · Zbl 1065.83064 · doi:10.1142/S0218271804006449
[66] R. Foot, Generalized mirror matter models. Phys. Lett. B 632(4), 467–470 (2006) · doi:10.1016/j.physletb.2005.10.074
[67] R. Foot, S. Mitra, Mirror matter in the solar system: new evidence for mirror matter from eros. Astropart. Phys. 19(6), 739–753 (2003a) · doi:10.1016/S0927-6505(03)00119-1
[68] R. Foot, S. Mitra, Have mirror micrometeorites been detected? Phys. Rev. D 68(7), 071901 (2003b) · doi:10.1103/PhysRevD.68.071901
[69] R. Foot, Z.K. Silagadze, Do mirror planets exist in our solar system? Acta Phys. Pol. B 32(7–8), 2271–2278 (2001)
[70] R. Foot, H. Lew, R.R. Volkas, A model with fundamental improper spacetime symmetries. Phys. Lett. B 272(1–2), 67–70 (1991) · doi:10.1016/0370-2693(91)91013-L
[71] L.J. Friesen, A.A. Jackson IV, H.A. Zook, D.J. Kessler, Analysis of orbital perturbations acting on objects in orbits near geosynchronous earth orbit. J. Geophys. Res. Planets 97(E3), 3845–3863 (1992)
[72] T. Fukushima, Precise computation of acceleration due to uniform ring or disk. Celest. Mech. Dyn. Astron. 108(4), 339–356 (2010) · Zbl 1223.70040 · doi:10.1007/s10569-010-9304-4
[73] P.F. Gath, H.R. Schulte, D. Weise, Challenges in the measurement and data-processing chain of the lisa mission. Space Sci. Rev. 151(1–3), 61–73 (2010) · doi:10.1007/s11214-009-9604-8
[74] S. Gillessen, F. Eisenhauer, T.K. Fritz, H. Bartko, K. Dodds-Eden, O. Pfuhl, T. Ott, R. Genzel, The orbit of the star s2 around sgr aa* from very large telescope and keck data. Astrophys. J. 707(2), L114–L117 (2009) · doi:10.1088/0004-637X/707/2/L114
[75] S. Gillessen, R. Genzel, T.K. Fritz, E. Quataert, C. Alig, A. Burkert, J. Cuadra, F. Eisenhauer, O. Pfuhl, K. Dodds-Eden, C.F. Gammie, T. Ott, A gas cloud on its way towards the supermassive black hole at the galactic centre. Nature 481(7379), 51–54 (2012) · doi:10.1038/nature10652
[76] A. Gould, Direct and indirect capture of weakly interacting massive particles by the earth. Astrophys. J. 328, 919–939 (1988) · doi:10.1086/166347
[77] A. Gould, Gravitational diffusion of solar system wimps. Astrophys. J. 368, 610–615 (1991) · doi:10.1086/169726
[78] M.J. Griffin, A. Abergel, A. Abreu, P.A.R. Ade, P. André, J.-L. Augueres, T. Babbedge, Y. Bae, T. Baillie, J.-P. Baluteau, M.J. Barlow, G. Bendo, D. Benielli, J.J. Bock, P. Bonhomme, D. Brisbin, C. Brockley-Blatt, M. Caldwell, C. Cara, N. Castro-Rodriguez, R. Cerulli, P. Chanial, S. Chen, E. Clark, D.L. Clements, L. Clerc, J. Coker, D. Communal, L. Conversi, P. Cox, D. Crumb, C. Cunningham, F. Daly, G.R. Davis, de P. Antoni, J. Delderfield, N. Devin, di A. Giorgio, I. Didschuns, K. Dohlen, M. Donati, A. Dowell, C.D. Dowell, L. Duband, L. Dumaye, R.J. Emery, M. Ferlet, D. Ferrand, J. Fontignie, M. Fox, A. Franceschini, M. Frerking, T. Fulton, J. Garcia, R. Gastaud, W.K. Gear, J. Glenn, A. Goizel, D.K. Griffin, T. Grundy, S. Guest, L. Guillemet, P.C. Hargrave, M. Harwit, P. Hastings, E. Hatziminaoglou, M. Herman, B. Hinde, V. Hristov, M. Huang, P. Imhof, K.J. Isaak, U. Israelsson, R.J. Ivison, D. Jennings, B. Kiernan, K.J. King, A.E. Lange, W. Latter, G. Laurent, P. Laurent, S.J. Leeks, E. Lellouch, L. Levenson, B. Li, J. Li, J. Lilienthal, T. Lim, S.J. Liu, N. Lu, S. Madden, G. Mainetti, P. Marliani, D. McKay, K. Mercier, S. Molinari, H. Morris, H. Moseley, J. Mulder, M. Mur, D.A. Naylor, H. Nguyen, B. O’Halloran, S. Oliver, G. Olofsson, H.-G. Olofsson, R. Orfei, M.J. Page, I. Pain, P. Panuzzo, A. Papageorgiou, G. Parks, P. Parr-Burman, A. Pearce, C. Pearson, I. Pérez-Fournon, F. Pinsard, G. Pisano, J. Podosek, M. Pohlen, E.T. Polehampton, D. Pouliquen, D. Rigopoulou, D. Rizzo, I.G. Roseboom, H. Roussel, M. Rowan-Robinson, B. Rownd, P. Saraceno, M. Sauvage, R. Savage, G. Savini, E. Sawyer, C. Scharmberg, D. Schmitt, N. Schneider, B. Schulz, A. Schwartz, R. Shafer, D.L. Shupe, B. Sibthorpe, S. Sidher, A. Smith, A.J. Smith, D. Smith, L. Spencer, B. Stobie, R. Sudiwala, K. Sukhatme, C. Surace, J.A. Stevens, B.M. Swinyard, M. Trichas, T. Tourette, H. Triou, S. Tseng, C. Tucker, A. Turner, M. Vaccari, I. Valtchanov, L. Vigroux, E. Virique, G. Voellmer, H. Walker, R. Ward, T. Waskett, M. Weilert, R. Wesson, G.J. White, N. Whitehouse, C.D. Wilson, B. Winter, A.L. Woodcraft, G.S. Wright, C.K. Xu, A. Zavagno, M. Zemcov, L. Zhang, E. Zonca, The herschel-spire instrument and its in-flight performance. Astron. Astrophys. 518, L3 (2010) · doi:10.1051/0004-6361/201014519
[79] R. Güsten, L.Å. Nyman, P. Schilke, K. Menten, C. Cesarsky, R. Booth, The atacama pathfinder experiment (apex)–a new submillimeter facility for southern skies. Astron. Astrophys. 454(2), L13–L16 (2006) · doi:10.1051/0004-6361:20065420
[80] H.E. Haber, G.L. Kane, The search for supersymmetry: probing physics beyond the standard model. Phys. Rep. 117(2–4), 75–263 (1985) · doi:10.1016/0370-1573(85)90051-1
[81] M.G. Hauser, Cobe/dirbe observations of infrared emission from stars and dust, in Back to the Galaxy vol. 278 of AIP Conference Proceedings, ed. by S.S. Holt, F. Verter (American Institute of Physics, New York, 1993), pp. 201–205.
[82] G. Hinshaw, J.L. Weiland, R.S. Hill, N. Odegard, D. Larson, C.L. Bennett, J. Dunkley, B. Gold, M.R. Greason, N. Jarosik, E. Komatsu, M.R. Nolta, L. Page, D.N. Spergel, E. Wollack, M. Halpern, A. Kogut, M. Limon, S.S. Meyer, G.S. Tucker, E.L. Wright, Five-year wilkinson microwave anisotropy probe observations: data processing, sky maps, and basic results. Astrophys. J. Suppl. 180(2), 225–245 (2009) · doi:10.1088/0067-0049/180/2/225
[83] K.-W. Hodapp, R.M. MacQueen, D.N.B. Hall, A search during the 1991 solar eclipse for the infrared signature of circumsolar dust. Nature 355, 707–710 (1992) · doi:10.1038/355707a0
[84] S. Horatschek, D. Petroff, Uniformly rotating homogeneous rings in post-newtonian gravity. Mon. Not. R. Astron. Soc. 408(3), 1749–1757 (2010) · doi:10.1111/j.1365-2966.2010.17241.x
[85] L.J. Horn, J. Hui, A.L. Lane, J.E. Colwell, Observations of neptunian rings by voyager photopolarimeter experiment. Geophys. Res. Lett. 17, 1745–1748 (1990) · doi:10.1029/GL017i010p01745
[86] A.Y. Ignatiev, R.R. Volkas, Geophysical constraints on mirror matter within the earth. Phys. Rev. D 62(2), 023508 (2000) · doi:10.1103/PhysRevD.62.023508
[87] L. Iorio, Dynamical determination of the mass of the kuiper belt from motions of the inner planets of the solar system. Mon. Not. R. Astron. Soc. 375(4), 1311–1314 (2007) · doi:10.1111/j.1365-2966.2006.11384.x
[88] A.A. Jackson, H.A. Zook, A solar system dust ring with earth as its shepherd. Nature 337, 629–631 (1989) · doi:10.1038/337629a0
[89] T. Johnson, Iau circular no. 3338 (1979)
[90] G. Jungman, M. Kamionkowski, K. Griest, Supersymmetric dark matter. Phys. Rep. 267(5–6), 195–373 (1996) · doi:10.1016/0370-1573(95)00058-5
[91] V. Karas, J.-M. Huré, O. Semerák, Topical review: Gravitating discs around black holes. Class. Quantum Gravity 21(7), R1–R51 (2004) · Zbl 1054.83002 · doi:10.1088/0264-9381/21/7/R01
[92] G.V. Kasatkin, Internal gravitational field of a thin homogeneous ring. Cosm. Res. 43(4), 245–253 (2005) · doi:10.1007/s10604-005-0042-4
[93] O.D. Kellog, Foundations of Potential Theory (Dover, New York, 1929)
[94] D.J. Kessler, B.G. Cour-Palais, Collision frequency of artificial satellites: the creation of a debris belt. J. Geophys. Res. Space Phys. 83(A6), 2637–2646 (1978) · doi:10.1029/JA083iA06p02637
[95] R. Khanna, S.K. Chakrabarti, Effects of a self-gravitating disc on test particle motion around a kerr black hole. Mon. Not. R. Astron. Soc. 259(1), 1–5 (1992)
[96] M.Y. Khlopov, Cosmoparticle Physics (World Scientific, Singapore, 1999) · Zbl 0937.83002
[97] M.Y. Khlopov, G.M. Beslin, N.G. Bochkarev, L.A. Pustil’nik, S.A. Pustil’nik, Observational physics of the mirror world. Sov. Astron. 35(1), 21–29 (1991)
[98] I.B. Khriplovich, Comment on ”Comments on recent work on dark-matter capture in the solar system” (2010). arXiv: 1005.1778 [astro-ph.EP]
[99] I.B. Khriplovich, Capture of dark matter by the solar system: simple estimates. Int. J. Modern Phys. D 20(1), 17–22 (2011) · Zbl 1213.85061 · doi:10.1142/S0218271811018640
[100] I.B. Khriplovich, D.L. Shepelyansky, Capture of dark matter by the solar system. Int. J. Modern Phys. D 18(12), 1903–1912 (2009) · Zbl 1181.83235 · doi:10.1142/S0218271809015758
[101] H. Kimura, I. Mann, Brightness of the solar f-corona. Earth Planets Space 50(6–7), 493–499 (1998)
[102] A. Kleinwächter, H. Labranche, R. Meinel, On the black hole limit of rotating discs and rings. Gen. Relativ. Gravit. 43(5), 1469–1486 (2011) · Zbl 1215.83025 · doi:10.1007/s10714-010-1135-9
[103] H. Klinkrad, Space Debris. Models and Risk Analysis (Springer Praxis Books, Chichester, 2006)
[104] I. Kobzarev, L.B. Okun’, I. Pomeranchuk, On the possibility of observing mirror particles. Sov. J. Nuclear Phys. 3, 837 (1966)
[105] E. Komatsu, J. Dunkley, M.R. Nolta, C.L. Bennett, B. Gold, G. Hinshaw, N. Jarosik, D. Larson, M. Limon, L. Page, D.N. Spergel, M. Halpern, R.S. Hill, A. Kogut, S.S. Meyer, G.S. Tucker, J.L. Weiland, E. Wollack, E.L. Wright, Five-year wilkinson microwave anisotropy probe observations: cosmological interpretation. Astrophys. J. Supp. 180(2), 330–376 (2009) · doi:10.1088/0067-0049/180/2/330
[106] A.S. Konopliv, C.F. Yoder, E.M. Standish, D.-N. Yuan, W.L. Sjogren, A global solution for the mars static and seasonal gravity, mars orientation, phobos and deimos masses, and mars ephemeris. Icarus 182(1), 23–50 (2006) · doi:10.1016/j.icarus.2005.12.025
[107] S. Kowalewsky, Zusatze und bermerkungen zu laplace’s untersuchung uber die gestalt des saturnringes. Astron. Nachr. 111(2643), 37–48 (1885) · JFM 17.1135.01 · doi:10.1002/asna.18851110303
[108] Y. Kozai, Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67(9), 591–598 (1962) · doi:10.1086/108790
[109] G.A. Krasinsky, E.V. Pitjeva, M.V. Vasilyev, E.I. Yagudina, Hidden mass in the asteroid belt. Icarus 158(1), 98–105 (2002) · doi:10.1006/icar.2002.6837
[110] P. Kuchynka, J. Laskar, A. Fienga, H. Manche, L. Somenzi (2009) Improving the asteroid perturbations modelling in planetary ephemerides, in Proceedings of the ”Journées 2008 Systèmes de référence spatio-temporels”, ed. by M.H. Soffel, N. Capitaine (Lohrmann-Observatorium and Observatoire de Paris, Dresden, 2009), pp. 84–85
[111] P. Kuchynka, J. Laskar, A. Fienga, H. Manche, A ring as a model of the main belt in planetary ephemerides. Astron. Astrophys. 514, A96 (2010) · Zbl 1213.85019 · doi:10.1051/0004-6361/200913346
[112] G.P. Kuiper, On the origin of the solar system, in Proceedings of a Topical Symposium, Commemorating the 50th Anniversary of the Yerkes Observatory and Half a Century of Progress in Astrophysics, ed. by J.A. Hynek (McGraw-Hill, New York, 1951), p. 357
[113] A. Kusenko, Solitons in the supersymmetric extensions of the standard model. Phys. Lett. B 405(1–2), 108–113 (1997) · doi:10.1016/S0370-2693(97)00584-4
[114] A. Kusenko, Q-balls in the mssm. Nucl. Phys. B Proc. Suppl. 62(1–3), 248–252 (1998) · doi:10.1016/S0920-5632(97)00664-6
[115] A. Kusenko, I.M. Shoemaker, Neutrinos from the terrestrial passage of supersymmetric dark-matter q-balls. Phys. Rev. D 80(2), 027701 (2009) · doi:10.1103/PhysRevD.80.027701
[116] G.G. Kuzmin, Astron. Zh. 33, 27 (1956)
[117] L. Labun, J. Birrell, J. Rafelski, Solar system signatures of impacts by compact ultra dense objects (2011). arXiv: 1104.4572 [astro-ph.EP]
[118] P. Lamy, J.R. Kuhn, H. Lin, S. Koutchmy, R.N. Smartt, No evidence of a circumsolar dust ring from infrared observations of the 1991 solar eclipse. Science 257(5075), 1377–1380 (1992) · doi:10.1126/science.257.5075.1377
[119] J. Laskar, G. Boué, Explicit expansion of the three-body disturbing function for arbitrary eccentricities and inclinations. Astron. Astrophys. 522 (November, 2010), p. A60 · Zbl 1260.85017
[120] H. Lass, L. Blitzer, The gravitational potential due to uniform disks and rings. Celest. Mech. Dyn. Astron. 30(3), 225–228 (1983) · Zbl 0561.70005
[121] U.-J. Le Verrier, Lettre de m. le verrier à m. faye sur la théorie de mercure et sur le mouvement du périhélie de cette planète. Comptes rendus hebdomadaires des séances de l’Académie des sciences 49, 379–383 (1859)
[122] L.A. Lebofsky, Stability of frosts in the solar system. Icarus 25(2), 205–217 (1975) · doi:10.1016/0019-1035(75)90020-2
[123] T.D. Lee, C.-N. Yang, Question of parity conservation in weak interactions. Phys. Rev. 104(1), 254–258 (1956) · doi:10.1103/PhysRev.104.254
[124] C. Leinert, B. Moster, Evidence for dust accumulation just outside the orbit of venus. Astron. Astrophys. 472(1), 335–340 (2007) · doi:10.1051/0004-6361:20077682
[125] J. Lense, H. Thirring, Über den einfluß der eigenrotation der zentralkörper auf die bewegung der planeten und monde nach der einsteinschen gravitationstheorie. Physikalische Zeitschrift 19, 156–163 (1918) · JFM 46.1317.01
[126] P.S. Letelier, Simple potential-density pairs for flat rings. Mon. Not. R. Astron. Soc. 381(3), 1031–1034 (2007) · doi:10.1111/j.1365-2966.2007.12128.x
[127] G. Li, Z. Yi, G. Heinzel, A. Rüdiger, O. Jennrich, W. Li, Y.Zia, F. Zeng, H. Zhao (2008) Methods for orbit optimization for the lisa gravitational wave observatory. Int. J. Modern Phys. D 17(7), 1021–1042 (2008) · Zbl 1153.83322
[128] L. Lichtenstein, Gleichgewichtsfiguren rotierender Flüssigkeiten (Springer, Berlin, 1933) · JFM 59.1441.12
[129] L. Lindegren, Gaia: astrometric performance and current status of the project, in Relativity in Fundamental Astronomy, ed. by S.A. Klioner, P.K. Seidelmann, M.H. Soffel, vol. 261 of Proceedings IAU Symposium (Cambridge University Press, Cambridge, 2010), pp. 296–305
[130] J.-C. Liou, N.L. Johnson, Instability of the present leo satellite populations. Adv. Space Res. 41(7), 1046–1053 (2008) · doi:10.1016/j.asr.2007.04.081
[131] J. Lundberg, J. Edsjö, Weakly interacting massive particle diffusion in the solar system including solar depletion and its effect on earth capture rates. Phys. Rev. D 69(12), 123505 (2004) · doi:10.1103/PhysRevD.69.123505
[132] W.D. MacMillan, The Theory of the Potential (McGraw Hill, New York, 1930) · JFM 56.1216.03
[133] R.M. MacQueen, Infrared observations of the outer solar corona. Astrophys. J. 154, 1059–1076 (1968) · doi:10.1086/149825
[134] I. Mann, E. Murad, On the existence of silicon nanodust near the sun. Astrophys. J. 624(2), L125–L128 (2005) · doi:10.1086/430701
[135] I. Mann, M. Köhler, H. Kimura, A. Cechowski, T. Minato, Dust in the solar system and in extra-solar planetary systems. Astron. Astrophys. Rev. 13(3), 159–228 (2006) · doi:10.1007/s00159-006-0028-0
[136] J.P. Marshall, T. Löhne, B. Montesinos, A.V. Krivov, C. Eiroa, O. Absil, G. Bryden, J. Maldonado, A. Mora, J. Sanz-Forcada, D. Ardila, J.-C. Augereau, A. Bayo, C. Del Burgo, W. Danchi, S. Ertel, D. Fedele, M. Fridlund, J. Lebreton, B.M. González-García, R. Liseau, G. Meeus, S. Müller, G.L. Pilbratt, A. Roberge, K. Stapelfeldt, P. Thébault, G.J. White, S. Wolf, A herschel resolved far-infrared dust ring around hd 207129. Astron. Astrophys. 529, A117 (2011) · doi:10.1051/0004-6361/201116673
[137] J.-R. Men, W.-T. Ni, G. Wang, Design of astrod-gw orbit. Chin. Astron. Astrophys. 34(4), 434–446 (2010) · doi:10.1016/j.chinastron.2010.10.008
[138] E.D. Miner, R.R. Wessen, J.N. Cuzzi, Planetary Ring Systems (Springer Praxis Books, Chichester, 2007)
[139] K. Mizutani, T. Maihara, N. Hiromoto, H. Takami, Near-infrared observation of the circumsolar dust emission during the 1983 solar eclipse. Nature 312, 134–136 (1984) · doi:10.1038/312134a0
[140] O. Montenbruck, E. Gill, Satellite Orbits, Models, Methods, and Applications (Springer, Berlin, 2000) · Zbl 0949.70001
[141] T. Morgan, L. Morgan, The gravitational field of a disk. Phys. Rev. 183(5), 1097–1101 (1969) · doi:10.1103/PhysRev.183.1097
[142] S. Mouret, Tests of fundamental physics with the gaia mission through the dynamics of minor planets. Phys. Rev. D 84(12), 122001 (2011) · doi:10.1103/PhysRevD.84.122001
[143] S. Mouret, J.L. Simon, F. Mignard, D. Hestroffer, The list of asteroids perturbing the mars orbit to be seen during future space missions. Astron. Astrophys. 508(1), 479–489 (2009) · doi:10.1051/0004-6361/200810979
[144] C.D. Murray, S.F. Dermott, Solar System Dynamics (Cambridge University Press, Cambridge, 1999) · Zbl 0957.70002
[145] N. R. C. Committee on Space Debris, Orbital Debris: A Technical Assessment (The National Academies Press, Washington, 1995)
[146] S. Nayakshin, S. Sazonov, R. Sunyaev, Are supermassive black holes shrouded by ’super-oort’ clouds of comets and asteroids? Mon. Not. R. Astron. Soc. 419(2), 1238–1247 (2012) · doi:10.1111/j.1365-2966.2011.19777.x
[147] S. Newcomb, Discussion and results of observations on transits of mercury, in Astronomical Papers of the American Ephemeris and Nautical Almanac, vol. 1 (U.S. Nautical Almanac Office, Washington, 1882), pp. 363–487
[148] W.-T. Ni, Astrod and astrod i. overview and progress. Int. J. Modern Phys. D 17(7), 921–940 (2008) · Zbl 1153.85300 · doi:10.1142/S0218271808012619
[149] M.M. Nieto, Analytic gravitational-force calculations for models of the kuiper belt, with application to the pioneer anomaly. Phys. Rev. D 72(8), 083004 (2005) · doi:10.1103/PhysRevD.72.083004
[150] R. Nilsson, R. Liseau, A. Brandeker, G. Olofsson, G.L. Pilbratt, C. Risacher, J. Rodmann, J.-C. Augereau, P. Bergman, C. Eiroa, M. Fridlund, P. Thébault, G.J. White, Kuiper belts around nearby stars. Astron. Astrophys. 518, A40 (2010) · doi:10.1051/0004-6361/201014444
[151] S. Nishida, Y. Eriguchi, A general relativistic toroid around a black hole. Astrophys. J. 427(1), 429–437 (1994) · doi:10.1086/174153
[152] A.M. Nobili, C.M. Will, The real value of mercury’s perihelion advance. Nature 320, 39–41 (1986) · doi:10.1038/320039a0
[153] L. Nottale, G. Schumacher, J. Gay, Scale relativity and quantization of the solar system. Astron. Astrophys. 322, 1018–1025 (1997)
[154] M.E. Ockert-Bell, J.A. Burns, I.J. Daubar, P.C. Thomas, J. Veverka, M.J.S. Belton, K.P. Klaasen, The structure of jupiter’s ring system as revealed by the galileo imaging experiment. Icarus 138(2), 188–213 (1999) · doi:10.1006/icar.1998.6072
[155] L.B. Okun’, Mirror particles and mirror matter: 50 years of speculation and searching. Phys. Usp. 50(4), 380–389 (2007) · doi:10.1070/PU2007v050n04ABEH006227
[156] M. Pavšič, External inversion, internal inversion, and reflection invariance. Int. J. Theor. Phys. 9(4), 229–244 (1974) · doi:10.1007/BF01810695
[157] A.H.G. Peter, Dark matter in the solar system. iii. the distribution function of wimps at the earth from gravitational capture. Phys. Rev. D 79(10), 103533 (2009a) · doi:10.1103/PhysRevD.79.103533
[158] A.H.G. Peter, Dark matter in the solar system. i. the distribution function of wimps at the earth from solar capture. Phys. Rev. D 79(10), 103531 (2009b) · doi:10.1103/PhysRevD.79.103531
[159] A.W. Peterson, Experimental detection of thermal radiation from interplanetary dust. Astrophys. J. 148, L37–L39 (1967) · doi:10.1086/180009
[160] A.W. Peterson, The coronal brightness at 2.23 microns. Astrophys. J. 155, 1009–1016 (1969) · doi:10.1086/149929
[161] D. Petroff, S. Horatschek, Uniformly rotating homogeneous and polytropic rings in newtonian gravity. Mon. Not. R. Astron. Soc. 389(1), 156–172 (2008) · doi:10.1111/j.1365-2966.2008.13540.x
[162] F.P. Pijpers, Helioseismic determination of the solar gravitational quadrupole moment. Mon. Not. R. Astron. Soc. 297(3), L76–L80 (1998) · doi:10.1046/j.1365-8711.1998.01801.x
[163] G.L. Pilbratt, J.R. Riedinger, T. Passvogel, G. Crone, D. Doyle, U. Gageur, A.M. Heras, C. Jewell, L. Metcalfe, S. Ott, M. Schmidt, Herschel space observatory. an esa facility for far-infrared and submillimetre astronomy. Astron. Astrophys. 518, L1 (2010) · doi:10.1051/0004-6361/201014759
[164] E.V. Pitjeva, High-precision ephemerides of planets-epm and determination of some astronomical constants. Sol. Syst. Res. 39(3), 176–186 (2005a) · doi:10.1007/s11208-005-0033-2
[165] E.V. Pitjeva, Relativistic effects and solar oblateness from radar observations of planets and spacecraft. Astron. Lett. 31(5), 340–349 (2005b) · doi:10.1134/1.1922533
[166] E.V. Pitjeva, Epm ephemerides and relativity, in Relativity in Fundamental Astronomy. vol. 261 of Proceedings IAU Symposium, ed. by S.A. Klioner, P.K. Seidelmann, M.H. Soffel (Cambridge University Press, Cambridge, 2010a), pp. 170–178.
[167] E.V. Pitjeva, Influence of trans-neptunian objects on motion of major planets and limitation on the total tno mass from planet and spacecraft ranging, in Icy Bodies of the Solar System, vol. 263 of Proceedings IAU Symposium, ed. by J.A. Fernández, D. Lazzaro, D. Prialnik, R. Schulz (Cambridge University Press, Cambridge, 2010b), pp. 93–97
[168] A. Poglitsch, C. Waelkens, N. Geis, H. Feuchtgruber, B. Vandenbussche, L. Rodriguez, O. Krause, E. Renotte, C. van Hoof, P. Saraceno, J. Cepa, F. Kerschbaum, P. Agnèse, B. Ali, B. Altieri, P. Andreani, J.-L. Augueres, Z. Balog, L. Barl, O.H. Bauer, N. Belbachir, M. Benedettini, N. Billot, O. Boulade, H. Bischof, J. Blommaert, E. Callut, C. Cara, R. Cerulli, D. Cesarsky, A. Contursi, Y. Creten, W. De Meester, V. Doublier, E. Doumayrou, L. Duband, K. Exter, R. Genzel, J.-M. Gillis, U. Grözinger, T. Henning, J. Herreros, R. Huygen, M. Inguscio, G. Jakob, C. Jamar, C. Jean, de J. Jong, R. Katterloher, C. Kiss, U. Klaas, D. Lemke, D. Lutz, S. Madden, B. Marquet, J. Martignac, A. Mazy, P. Merken, F. Montfort, L. Morbidelli, T. Müller, M. Nielbock, K. Okumura, R. Orfei, R. Ottensamer, S. Pezzuto, P. Popesso, J. Putzeys, S. Regibo, V. Reveret, P. Royer, M. Sauvage, J. Schreiber, J. Stegmaier, D. Schmitt, J. Schubert, E. Sturm, M. Thiel, G. Tofani, R. Vavrek, M. Wetzstein, E. Wieprecht, E. Wiezorrek, The photodetector array camera and spectrometer (pacs) on the herschel space observatory. Astron. Astrophys. 518, L2 (2010) · doi:10.1051/0004-6361/201014535
[169] H. Poincaré, Sur l’équilibre d’une masse fluide animée d’un mouvement de rotation. Comptes Rendus hebdomadaires des séances de l’Académie des Sciences 100(January–June), 346–348 (1885a)
[170] H. Poincaré, Mémoires et observations. sur l’équilibre d’une masse fluide animée d’un mouvement de rotation. Bulletin Astronomique, Serie I 2, 109–118 (1885b)
[171] H. Poincaré, Mémoires et observations. sur l’équilibre d’une masse fluide animée d’un mouvement de rotation. Bulletin Astronomique, Serie I 2, 405–413 (1885c)
[172] H. Poincaré, Les limites de la loi de newton. Bull. Astron. 17 (1953), chapter IV, p. 138; Conclusion, p. 265.
[173] C.C. Porco, R.A. West, S. Squyres, A. McEwen, P. Thomas, C.D. Murray, A. Delgenio, A.P. Ingersoll, T.V. Johnson, G. Neukum, J. Veverka, L. Dones, A. Brahic, J.A. Burns, V. Haemmerle, B. Knowles, D. Dawson, T. Roatsch, K. Beurle, W. Owen, Cassini imaging science: instrument characteristics and anticipated scientific investigations at saturn. Space Sci. Rev. 115(1–4), 363–497 (2004) · doi:10.1007/s11214-004-1456-7
[174] A. Povoleri, S. Kemble, Lisa orbits, in LASER INTERFEROMETER SPACE ANTENNA: Sixth International LISA Symposium, ed. by S.M. Merkowitz, J.C. Livas, vol. 873 of AIP Conference Proceedings (American Institute of Physics, New York, 2006), pp. 702–706
[175] J. Ramos-Caro, J.F. Pedraza, P.S. Letelier, Motion around a monopole + ring system i. stability of equatorial circular orbits versus regularity of three-dimensional motion. Mon. Not. R. Astron. Soc. 414(4), 3105–3116 (2011) · doi:10.1111/j.1365-2966.2011.18618.x
[176] U.R. Rao, T.K. Alex, V.S. Iyengar, K. Kasturirangan, T.M.K. Marar, R.S. Mathur, D.P. Sharma, Ir observations of the solar corona–a ring around the sun. Nature 289, 779–780 (1981) · doi:10.1038/289779a0
[177] J.J. Rawal, S. Ramadurai, Are there rings around the sun? Earth Moon Planets (2011)
[178] W.T. Reach, Structure of the earth’s circumsolar dust ring. Icarus 209(2), 848–850 (2010) · doi:10.1016/j.icarus.2010.06.034
[179] W.T. Reach, B.A. Franz, J.L. Weiland, M.G. Hauser, T.N. Kelsall, E.L. Wright, G. Rawleit, S.W. Stemwedel, W.J. Spiesman, Observational confirmation of a circumsolar dust ring by the cobe satellite. Nature 374, 521–523 (1994) · doi:10.1038/374521a0
[180] E.A. Roth, Perturbation of a test body by a massive ring in a newtonian field, Special Report 21 (European Space Research Organisation, 1972)
[181] A.E. Roy, Orbital Motion, 4th edn. (Institute of Physics, Bristol, 2005)
[182] J.-P. Rozelot, C. Damiani, History of solar oblateness measurements and interpretation. Eur. Phys. J. H 36(3), 407–436 (2011) · doi:10.1140/epjh/e2011-20017-4
[183] V.C. Rubin, The rotation of spiral galaxies. Science 220(4604), 1339–1344 (1983) · doi:10.1126/science.220.4604.1339
[184] V.C. Rubin, W.K. Ford Jr., N. Thonnard, D. Burstein, Rotational properties of 23 sb galaxies. Astrophys. J. 261, 439–456 (1982) · doi:10.1086/160355
[185] L. Sadeghian, C.M. Will, Testing the black hole no-hair theorem at the galactic center: perturbing effects of stars in the surrounding cluster. Class. Quantum Gravity 28(22), 225029 (2011) · Zbl 1230.83061 · doi:10.1088/0264-9381/28/22/225029
[186] T. Sandage, The Neptune File (The Penguin Press, New York, 2000)
[187] R.W. Schnee, Introduction to dark matter experiments, in Physics of the Large and Small: Proceedings of the 2009 Theoretical Advanced Study Institute in Elementary Particle Physics, ed. by C. Csaki, S. Dodelson (World Scientific, Singapore, 2011), pp. 775–830 · Zbl 1328.81010
[188] G. Schumacher, J. Gay, An attempt to detect vulcanoids with soho/lasco images. i. scale relativity and quantization of the solar system. Astron. Astrophys. 368(3), 1108–1114 (2001) · doi:10.1051/0004-6361:20000356
[189] D.A.J. Seargent, Weird Astronomy (Springer, New York, 2011), p. 68
[190] A. Shannon, Y. Wu, Planetesimals in debris disks of sun-like stars. Astrophys. J. 739, 1–36 (2011) · doi:10.1088/0004-637X/739/1/36
[191] Z.K. Silagadze, Tev scale gravity, mirror universe and $$\(\backslash\)ldots$$ dinosaurs. Acta Phys. Pol. B 32(1), 99–128 (2001)
[192] Z.K. Silagadze, Mirror objects in the solar system? Acta Phys. Pol. B 33(5), 1325–1341 (2002)
[193] Z.K. Silagadze, Tunguska genetic anomaly and electrophonic meteors. Acta Phys. Pol. B 36(3), 935–964 (2005)
[194] J. Singh, T. Sakurai, K. Ichimoto, M. Hagino, T.T. Yamamoto, Existence of nanoparticle dust grains in the inner solar corona? Astrophys. J. 608(1), L69–L72 (2004) · doi:10.1086/422138
[195] B.A. Smith, L.A. Soderblom, T.V. Johnson, A.P. Ingersoll, S.A. Collins, E.M. Shoemaker, G.E. Hunt, H. Masursky, M.H. Carr, M.E. Davies, A.F. Cook, J.M. Boyce, T. Owen, G.E. Danielson, C. Sagan, R.F. Beebe, J. Veverka, J.F. McCauley, R.G. Strom, D. Morrison, G.A. Briggs, V.E. Suomi, The jupiter system through the eyes of voyager 1. Science 204(4396), 951–957–960–972 (1979)
[196] L. Somenzi, A. Fienga, J. Laskar, P. Kuchynka, Determination of asteroid masses from their close encounters with mars. Planet. Space Sci. 58(5), 858–863 (2010) · doi:10.1016/j.pss.2010.01.010
[197] J. Souchay, D. Gauchez, A. Nedelcu, Influence of the largest asteroids on the orbital motions of terrestrial planets: application to the earth and mars. Sol. Syst. Res. 43(1), 79–81 (2009) · doi:10.1134/S0038094609010080
[198] E.M. Standish, Jpl planetary ephemeris de409. Interoffice memorandum IOM 312.N-03-007 (2003)
[199] E.M. Standish, A. Fienga, Accuracy limit of modern ephemerides imposed by the uncertainties in asteroid masses. Astron. Astrophys. 384(1), 322–328 (2002) · doi:10.1051/0004-6361:20011821
[200] E.G. Stansbery, D.J. Kessler, T.E. Tracy, M.J. Matney, J.F. Stanley, Characterization of the orbital debris environment from haystack radar measurements. Adv. Space Res. 16(11), 5–16 (1995) · doi:10.1016/0273-1177(95)98748-D
[201] G. Steigman, M.S. Turner, Cosmological constraints on the properties of weakly interacting massive particles. Nucl. Phys. B 253, 375–386 (1985) · doi:10.1016/0550-3213(85)90537-1
[202] Z.-Y. Su, A.-M. Wu, D. Lee, W.-T. Ni, S.-C. Lin, Asteroid perturbations and the possible determination of asteroid masses through the astrod space mission. Planet. Space Sci. 47(3–4), 339–343 (1999) · doi:10.1016/S0032-0633(99)00005-7
[203] T. Summer, The zeplin iii dark matter project. New Astron. Rev. 49(2–6), 277–281 (2005) · doi:10.1016/j.newar.2005.01.018
[204] J.C. Theys, E.A. Spiegel, Ring galaxies. i. Astrophys. J. 208, 650–661 (1976) · doi:10.1086/154646
[205] J.C. Theys, E.A. Spiegel, Ring galaxies. ii. Astrophys. J. 212, 616–633 (1977) · doi:10.1086/155084
[206] A. Toomre, On the distribution of matter within highly flattened galaxies. Astrophys. J. 138, 385–392 (1963) · Zbl 0109.23403 · doi:10.1086/147653
[207] E. Tresaco, A. Elipe, A. Riaguas, Dynamics of a particle under the gravitational potential of a massive annulus: properties and equilibrium description. Celest. Mech. Dyn. Astron. 111(4), 431–447 (2011) · Zbl 1266.70039 · doi:10.1007/s10569-011-9371-1
[208] E. Tresaco, A. Elipe, A. Riaguas, Computation of families of periodic orbits and bifurcations around a massive annulus. Astrophys. Space Sci. 338(1), 23–33 (2012) · Zbl 1238.85012 · doi:10.1007/s10509-011-0925-1
[209] C. Turon, K.S. O’Flaherty, M.A.C. Perryman (eds.), The Three-Dimensional Universe with Gaia, ESA SP-576 (2005)
[210] D. Tytler, J.M. O’Meara, N. Suzuki, D. Lubin, Review of big bang nucleosynthesis and primordial abundances. Phys. Scr. 2000(T85), 12–31 (2000) · doi:10.1238/Physica.Topical.085a00012
[211] M. Ujevic, P.S. Letelier, D. Vogt, Relativistic ring models. Int. J. Modern Phys. D 20(12), 2291–2304 (2011) · Zbl 1266.83051 · doi:10.1142/S0218271811020305
[212] F. van Leeuwen, Validation of the new hipparcos reduction. Astron. Astrophys. 474(2), 653–664 (2007) · doi:10.1051/0004-6361:20078357
[213] M.A. Vashkovyak, S.N. Vashkovyak, Force function of a slightly elliptical gaussian ring and its generalization to a nearly coplanar system of rings. Solar Syst. Res. 46(1), 69–77 (2012) · doi:10.1134/S0038094611060098
[214] J.-Y. Vinet, Lisa and asteroids. Class. Quantum Gravity 23(15), 4939–4944 (2006) · Zbl 1099.83514 · doi:10.1088/0264-9381/23/15/012
[215] D. Vogt, P.S. Letelier, Relativistic models of galaxies. Mon. Not. R. Astron. Soc. 363(10), 268–284 (2005) · doi:10.1111/j.1365-2966.2005.09436.x
[216] D. Vogt, P.S. Letelier, Analytical potential-density pairs for flat rings and toroidal structures. Mon. Not. R. Astron. Soc. 396(3), 1487–1498 (2009) · doi:10.1111/j.1365-2966.2009.14803.x
[217] D. Vokrouhlický, A complete linear model for the yarkovsky thermal force on spherical asteroid fragments. Astron. Astrophys. 344, 362–366 (1999)
[218] H. von Seeliger, Das zodiakallicht und die empirischen glieder in der bewegung der innern planeten. Sitzungsber. Kön. Bayer. Akad. Wiss. (München) 36, 595–622 (1906) · JFM 37.0970.04
[219] B. Whitmore, R. Lucas, D. McElroy, T. Steiman-Cameron, P. Sackett, R. Olling, New observations and a photographic atlas of polar-ring galaxies. Astron. J. 100(5), 1489–1522 (1990) · doi:10.1086/115614
[220] C. Will, Theory and experiment in gravitational physics, revised edition. (Cambridge University Press, Cambridge, 1993) · Zbl 0785.53068
[221] J. Williams, Determining asteroid masses from perturbations on mars. Icarus 57(1), 1–13 (1984) · doi:10.1016/0019-1035(84)90002-2
[222] A. Zhitnitsky, Cold dark matter as compact composite objects. Phys. Rev. D 74(4), 043515 (2006) · doi:10.1103/PhysRevD.74.043515
[223] F. Zwicky, Die rotverschiebung von extragalaktischen nebeln. Helvetica Phisica Acta 6, 110–127 (1933) · JFM 59.1632.03
[224] F. Zwicky, On the masses of nebulae and of clusters of nebulae. Astrophys. J. 86(3), 217–246 (1937) · Zbl 0017.28802 · doi:10.1086/143864
[225] F. Zypman, Off-axis electric field of a ring of charge. Am. J. Phys. 74(4), 295–300 (2006) · Zbl 1219.78046 · doi:10.1119/1.2149869
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.