×

Diagonalisation schemes and applications. (English) Zbl 1202.47094

Let \(A : {\mathbb R} \to {\mathbb C}^{m\times m}\) be a continuous matrix-valued function depending upon a real/complex parameter \(\rho\) such that the family of matrices has the asymptotic expansion \(A(\rho) = A_0 + \rho A_1 + \rho^2 A_2 +\cdots+\rho^N A_N + O(\rho^{N+1})\), \(\rho\to 0\), \(N\in\mathbb N\), and \(A_0\) is non-degenerate (i.e., \(A_0\) has \(m\) distinct eigenvalues). The authors start from the existence of uniformly bounded families of invertible matrices \(M(\rho)\) with uniformly bounded inverse having asymptotic expansions as \(\rho\to 0\) and satisfying \(A(\rho)M(\rho) -M(\rho)\Lambda(\rho) = O(\rho^N)\), \(N\in \mathbb N\), for a diagonal matrix \(\Lambda(\rho)\). They show how to construct the diagonaliser \(M(\rho)\) using a recursion scheme and how the aforementioned uniform bounds and the asymptotic expansion of \(\Lambda(\rho)\) arise naturally within the construction. The main objective of this note is to discuss how to generalise this scheme to degenerate matrix functions and to replace the assumption of non-degeneracy by weaker assumptions.
Applications in different frameworks are also discussed and references to further applications given.

MSC:

47N40 Applications of operator theory in numerical analysis
47A56 Functions whose values are linear operators (operator- and matrix-valued functions, etc., including analytic and meromorphic ones)
34E05 Asymptotic expansions of solutions to ordinary differential equations
35M10 PDEs of mixed type
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
80A17 Thermodynamics of continua

References:

[1] Eastham, M.S.P.: The Asymptotic Solution of Linear Differential Systems. Applications of the Levinson Theorem. Number 4 in London Mathematical Society Monographs, New Series. Clarendon Press, Oxford (1989) · Zbl 0674.34045
[2] Hirosawa, F.; Reissig, M.; Albeverio, S.; Schrohe, E.; Demuth, M.; Schulze, B.-W., From wave to Klein-Gordon type decay rates, Nonlinear Hyperbolic Equations Spectral Theory and Wavelet Transformations, volume 145 of Operator Theory, Advances and Applications, 95-155 (2003), Basel: Birkhäuser Verlag, Basel · Zbl 1052.35110
[3] Hirosawa, F.; Reissig, M., Well-posedness in Sobolev spaces for second-order strictly hyperbolic equations with nondifferentiable oscillating coefficients, Ann. Glob. Anal. Geom., 25, 2, 99-119 (2004) · Zbl 1047.35079 · doi:10.1023/B:AGAG.0000018553.77318.81
[4] Jachmann, K.: A uniform treatment of models of thermoelasticity. PhD thesis, TU Bergakademie Freiberg, ISSN: 1617-3309, ID-Nr: 430, (2008)
[5] Kato, T.: Perturbation Theory for Linear Operators. Corr. printing of the 2nd edn. Grundlehren der mathematischen Wissenschaften, 132. Springer, Berlin (1980) · Zbl 0435.47001
[6] Knopp, K.: Elements of the Theory of Functions. Translated by Bagemihl, F., p. 140. Dover, New York (1952) · Zbl 0048.30802
[7] Kubo, A., Reissig, M.: C^∞-well posedness of the Cauchy problem for quasi-linear hyperbolic equations with coefficients non-Lipschitz in time and smooth in space. In: Picard, R., et al. (eds.) Evolution Equations. Propagation Phenomena, Global Existence, Influence on Non-Linearities. Based on the workshop, Warsaw, Poland, July 1-7, 2001, pp. 131-150. Polish Academy of Sciences, Institute of Mathematics, Warsaw, Banach Cent. Publ. 60, (2003) · Zbl 1035.35083
[8] Kubo, A.; Reissig, M., Construction of parametrix to strictly hyperbolic Cauchy problems with fast oscillations in non-Lipschitz coefficients, Commun. Partial Differ. Equ., 28, 7-8, 1471-1502 (2003) · Zbl 1036.35118 · doi:10.1081/PDE-120024375
[9] Reissig, M.; Smith, J., L^p-L^q estimate for wave equation with bounded time dependent coefficient, Hokkaido Math. J., 34, 3, 541-586 (2005) · Zbl 1090.35046
[10] Reissig, M.; Wang, Y.-G., Cauchy problems for linear thermoelastic systems of type III in one space variable, Math. Methods Appl. Sci., 28, 11, 1359-1381 (2005) · Zbl 1070.35111 · doi:10.1002/mma.619
[11] Reissig, M., Wirth, J.: L^p-L^q decay estimates for wave equations with monotone time-dependent dissipation. In: Yamada, N. (ed.) Mathematical Models of Phenomena and Evolution Equations, Kôkyûroku, Nr. 1475, pp. 91-106. RIMS, Kyoto University (2006)
[12] Reissig, M.; Wirth, J., Anisotropic thermo-elasiticity in 2D. Part I: a unified treatment, Asymptot. Anal., 57, 1-2, 1-27 (2008) · Zbl 1166.35006
[13] Reissig, M.; Yagdjian, K., L_p-L_q decay estimates for the solutions of strictly hyperbolic equations of second order with increasing in time coefficients, Math. Nachr., 214, 71-104 (2000) · Zbl 1006.35057 · doi:10.1002/1522-2616(200006)214:1<71::AID-MANA71>3.0.CO;2-C
[14] Ruzhansky, M., Smith, J.: Dispersive and Strichartz estimates for hyperbolic equations with constant coefficients. MSJ Memoirs 22, Mathematical Society of Japan, Tokyo (2010) · Zbl 1191.35006
[15] Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton (1970) · Zbl 0207.13501
[16] Taylor, M. E., Reflection of singularities of solutions to systems of differential equations, Commun. Pure Appl. Math., 28, 457-478 (1975) · Zbl 0332.35058 · doi:10.1002/cpa.3160280403
[17] Wang, Y.-G.: A new approach to study hyperbolic-parabolic coupled systems. In: Picard, R., et al. (eds.) Evolution equations. Propagation Phenomena, Global Existence, Influence on Non-Linearities. Based on the workshop, Warsaw, Poland, July 1-7, 2001, pp. 227-236. Polish Academy of Sciences, Institute of Mathematics, Warsaw, Banach Cent. Publ. 60 (2003) · Zbl 1029.35012
[18] Wang, Y.-G., Microlocal analysis in nonlinear thermoelasticity, Nonlinear Anal., 54, 683-705 (2003) · Zbl 1027.35007 · doi:10.1016/S0362-546X(03)00095-6
[19] Wirth, J., Wave equations with time-dependent dissipation. I: non-effective dissipation, J. Differ. Equ., 222, 2, 487-514 (2006) · Zbl 1090.35047 · doi:10.1016/j.jde.2005.07.019
[20] Wirth, J., Wave equations with time-dependent dissipation. II: effective dissipation, J. Differ. Equ., 232, 1, 74-103 (2007) · Zbl 1114.35116 · doi:10.1016/j.jde.2006.06.004
[21] Wirth, J., Anisotropic thermo-elasiticity in 2D. Part II: applications, Asymptot. Anal., 57, 1-2, 29-40 (2008) · Zbl 1144.35351
[22] Wirth, J., On the influence of time-periodic dissipation on energy and dispersive estimates, Hiroshima Math. J., 38, 3, 397-410 (2008) · Zbl 1172.35442
[23] Yagdjian, K., The Cauchy problem for hyperbolic operators, Mathematical Topics, vol. 12 (1997), Berlin: Akademie Verlag, Berlin · Zbl 0887.35002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.