×

On the number of subgroups of finite abelian groups. (English) Zbl 0890.11027

Let \[ t_2(n) = \sum_{|{\mathcal G}|=n,r({\mathcal G})\leq2}\tau({\mathcal G}), \] where \(\tau({\mathcal G})\) denotes the number of subgroups of a finite abelian group \({\mathcal G}, r({\mathcal G})\) is the rank of \({\mathcal G}\), and \(|{\mathcal G}|\) is the order of \({\mathcal G}\). The group \({\mathcal G}\) has rank \(r\) if \({\mathcal G}\cong \mathbb Z/n_1\mathbb Z \otimes \cdots \otimes \mathbb Z/n_r\mathbb Z,\) where \(n_j\mid n_{j+1}\) for \(j = 1,\cdots,r - 1\). We set \[ T(x) =\sum_{n\leq x}t_2(n) = \sum_{|{\mathcal G}|\leq x,r({\mathcal G})\leq2}\tau({\mathcal G}) \] so that one has \(T(x) = K_1x\log^2x + K_2x\log x + K_3x + \Delta(x)\), where \(K_j\) are effective constants and \(\Delta(x)\) is to be considered as the error term in the asymptotic formula for \(T(x)\).
In the present work the authors obtain the bound \(\Delta(x) \ll x^{31/43+\varepsilon}\). This is obtained by using convolution (the Dirichlet hyperbola method) and the sharpest known asymptotic formulas for the summatory functions of \(\sigma(n) = \sum_{d|n}d\) and \(d^*(n)=\sum_{n_1n_2n_3^2n_4^2=n}1\), since the relevant generating Dirichlet series in this problem turns out to be \[ \zeta^2(s)\zeta^2(2s)\zeta(2s-1)\prod_p(1+p^{-2s}-2p^{-3s}). \] In the meantime H. Menzer [Proc. Conf. Anal. Number Theory, Univ. Wien, 181-188 (1996; Zbl 0879.11049)] improved the above bound to \( \Delta(x) \ll x^{9/14+\varepsilon}, \) by using two estimates in the three-dimensional asymmetric divisor problem. G. Bhowmik and J. Wu [Arch. Math. 69, 95-104 (1997)] used another method, based on a weighted three-dimensional divisor problem to obtain a further improvement, namely \(\Delta(x) \ll x^{5/8}\log^4x\) (note that 31/43 = 0.720930\(\dots\), 9/14 = 0.642857\(\dots\), 5/8 = 0.625).
Reviewer: A.Ivić (Beograd)

MSC:

11N37 Asymptotic results on arithmetic functions
11N45 Asymptotic results on counting functions for algebraic and topological structures

Citations:

Zbl 0879.11049
Full Text: DOI

References:

[1] Balasubramanian, R.; Ramachandra, K., Some problems of analytic number theory III, Hardy-Ramanujan J., 4, 13-40 (1981) · Zbl 0483.10038
[2] Bhowmik, G., Divisor functions of integer matrices: evaluations, average orders and applications, Astérisque, 209, 169-177 (1992) · Zbl 0787.11007
[3] Bhowmik, G., Average orders of certain functions connected with arithmetic of matrices, J. Ind. Math. Soc, 59, 97-106 (1993) · Zbl 1015.11511
[4] Bhowmik, G.; Ramaré, O., Average orders of multiplicative arithmetical functions of integer matrices, Acta Arith., 66.1, 45-62 (1994) · Zbl 0795.11047
[5] G. Bhowmik, Factorization of matrices, partitions & Hecke algebra.To be published.
[6] Cohen, E., On the average number of direct factors of a finite abelian group, Acta Arith., 6, 159-173 (1960) · Zbl 0113.25305
[7] Erdös, P.; Szekeres, G., Über die Anzahl der Abelscher Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem, Acta Sci. Math. (Szeged), 7, 97-102 (1935) · JFM 60.0893.02
[8] Knopfmacher, J., Solomon’s zeta function and enumeration of lattices over orders, Analysis, 5, 29-42 (1985) · Zbl 0572.12005
[9] Krätzel, E., On the average number of direct factors of a finite abelian group, Acta Arith., 51, 369-379 (1988) · Zbl 0633.10044
[10] Liu, H.-Q., On the number of abelian groups of a given order (supplement), Acta Arith., 64, 285-296 (1993) · Zbl 0790.11074
[11] Liu, H.-Q., Divisor problems of 4 and 3 dimensions, Acta Arith., 73, 249-269 (1995) · Zbl 0846.11056
[12] Menzer, H., On the average number of direct factors of a finite abelian group, J. de Théorie des Nombres de Bordeaux, 7, 155-164 (1995) · Zbl 0840.11038
[13] A. Walfisz,Weylsche Exponentialsummen in der neueren Zahlentheorie. VEB Deutscher Verlag der Wissensch. 1963. · Zbl 0146.06003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.