×

On mixed dynamics of two-dimensional reversible diffeomorphisms with symmetric non-transversal heteroclinic cycles. (English. Russian original) Zbl 1443.37022

Izv. Math. 84, No. 1, 23-51 (2020); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 84, No. 1, 27-59 (2020).
Summary: We consider one-parameter families (general unfoldings) of two-dimensional reversible diffeomorphisms that contain a diffeomorphism with a symmetric non-transversal heteroclinic cycle. We show that in such families there exist Newhouse intervals of parameters such that the values corresponding to the co-existence of infinitely many stable, completely unstable, saddle and symmetric elliptic periodic orbits are generic (that is, they form Baire second-category sets). Also, the closures of the sets of orbits of different types have non-empty intersections.

MSC:

37C05 Dynamical systems involving smooth mappings and diffeomorphisms
37C29 Homoclinic and heteroclinic orbits for dynamical systems
37C27 Periodic orbits of vector fields and flows
37C55 Periodic and quasi-periodic flows and diffeomorphisms
Full Text: DOI

References:

[1] S. V. Gonchenko, D. V. Turaev, and L. P. Shilnikov 1997 On Newhouse domains of two-dimensional diffeomorphisms which are close to a diffeomorphism with a structurally unstable heteroclinic cycle Dynamical systems and related topics, Collection of articles. To the 60th anniversary of academician Dmitrii Viktorovich Anosov Trudy Mat. Inst. Steklova 216 Nauka, Moscow 76-125 · Zbl 0931.37006
[2] English transl. S. V. Gonchenko, D. V. Turaev, and L. P. Shilnikov 1997 Proc. Steklov Inst. Math.216 70-118
[3] S. V. Gonchenko, L. P. Shilnikov, and O. V. Sten’kin 2002 On Newhouse regions with infinitely many stable and unstable invariant tori Progress in nonlinear scienceNizhny Novgorod 2001 1 RAS, Inst. Appl. Phys., Nizhniy Novgorod 80-102
[4] S. V. Gonchenko, O. V. Sten’kin, and L. P. Shilnikov 2006 On the existence of infinitely many stable and unstable invariant tori for systems from Newhouse regions with heteroclinic tangencies Nelin. Dinam.,2 1 3-25
[5] D. Turaev 2015 Maps close to identity and universal maps in the Newhouse domain Comm. Math. Phys.335 3 1235-1277 · Zbl 1347.37038 · doi:10.1007/s00220-015-2338-4
[6] S. V. Gonchenko 2016 Reversible mixed dynamics: a concept and examples Discontin. Nonlinearity Complex.5 4 365-374 · Zbl 1356.37043 · doi:10.5890/DNC.2016.12.003
[7] S. V. Gonchenko and D. V. Turaev 2017 On three types of dynamics and the notion of attractor Order and chaos in dynamical systems, Collected papers. On the occasion of the 80th anniversary of the birth of Academician Dmitry Viktorovich Anosov Tr. Mat. Inst. Steklova 297 MAIK “Nauka/Interperiodika”, Moscow 133-157 · Zbl 1377.37040 · doi:10.1134/S0371968517020078
[8] English transl. S. V. Gonchenko and D. V. Turaev 2017 Proc. Steklov Inst. Math.297 116-137 · Zbl 1377.37040 · doi:10.1134/S0081543817040071
[9] S. E. Newhouse 1979 The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms Inst. Hautes Études Sci. Publ. Math.50 101-151 · Zbl 0445.58022 · doi:10.1007/BF02684771
[10] S. V. Gonchenko, D. V. Turaev, and L. P. Shil’nikov 1993 On the existence of Newhouse domains in a neighborhood of systems with a structurally unstable Poincaré homoclinic curve (the higher-dimensional case) Dokl. Akad. Nauk329 4 404-407 · Zbl 0823.58030
[11] English transl. S. V. Gonchenko, D. V. Turaev, and L. P. Shil’nikov 1993 Russian Acad. Sci. Dokl. Math.47 2 268-273
[12] S. E. Newhouse 1974 Diffeomorphisms with infinitely many sinks Topology13 9-18 · Zbl 0275.58016 · doi:10.1016/0040-9383(74)90034-2
[13] S. V. Gonchenko, D. V. Turaev, and L. P. Shil’nikov 1993 Dynamical phenomena in multidimensional systems with a structurally unstable homoclinic Poincaré curve Dokl. Akad. Nauk330 2 144-147 · Zbl 0864.58043
[14] English transl. S. V. Gonchenko, D. V. Turaev, and L. P. Shil’nikov 1993 Russian Acad. Sci. Dokl. Math.47 3 410-415
[15] S. V. Gonchenko, L. P. Shil’nikov, and D. V. Turaev 1996 Dynamical phenomena in systems with structurally unstable Poincaré homoclinic orbits Chaos6 1 15-31 · Zbl 1055.37578 · doi:10.1063/1.166154
[16] S. V. Gonchenko, L. P. Shilnikov, and D. Turaev 2008 On dynamical properties of multidimensional diffeomorphisms from Newhouse regions. I Nonlinearity21 5 923-972 · Zbl 1160.37019 · doi:10.1088/0951-7715/21/5/003
[17] V. S. Afraĭmovich and L. P. Shilnikov 1983 Strange attractors and quasiattractors Nonlinear dynamics and turbulence Interaction Mech. Math. Ser. Pitman, Boston, MA 1-34 · Zbl 0532.58018
[18] S. V. Gonchenko and L. P. Shilnikov 2001 On two-dimensional area-preserving mappings with homoclinic tangencies Dokl. Akad. Nauk378 6 727-732 · Zbl 1041.37033
[19] English transl. S. V. Gonchenko and L. P. Shilnikov 2001 Dokl. Math.63 3 395-399
[20] M. S. Gonchenko and S. V. Gonchenko 2009 On cascades of elliptic periodic points in two-dimensional symplectic maps with homoclinic tangencies Regul. Chaotic Dyn.14 1 116-136 · Zbl 1229.37054 · doi:10.1134/S1560354709010080
[21] A. Delshams, M. Gonchenko, and S. Gonchenko 2015 On dynamics and bifurcations of area-preserving maps with homoclinic tangencies Nonlinearity28 9 3027-3071 · Zbl 1357.37075 · doi:10.1088/0951-7715/28/9/3027
[22] A. O. Kazakov 2013 Strange attractors and mixed dynamics in the problem of an unbalanced rubber ball rolling on a plane Regul. Chaotic Dyn.18 5 508-520 · Zbl 1417.37223 · doi:10.1134/S1560354713050043
[23] L. M. Lerman and D. Turaev 2012 Breakdown of symmetry in reversible systems Regul. Chaotic Dyn.17 3-4 318-336 · Zbl 1280.37049 · doi:10.1134/S1560354712030082
[24] A. S. Gonchenko, S. V. Gonchenko, A. O. Kazakov, and D. V. Turaev 2017 On the phenomenon of mixed dynamics in Pikovsky-Topaj system of coupled rotators Phys. D350 45-57 · Zbl 1376.34042 · doi:10.1016/j.physd.2017.02.002
[25] M. B. Sevryuk 1986 Reversible Systems Lecture Notes in Math. 1211 Springer-Verlag, Berlin · Zbl 0661.58002 · doi:10.1007/BFb0075877
[26] S. V. Gonchenko, J. S. W. Lamb, I. Rios, and D. Turaev 2014 Attractors and repellers near generic elliptic points of reversible maps Dokl. Akad. Nauk454 4 375-378 · Zbl 1301.37013 · doi:10.7868/S0869565214040045
[27] English transl. S. V. Gonchenko, J. S. W. Lamb, I. Rios, and D. Turaev 2014 Dokl. Math.89 1 65-67 · Zbl 1301.37013 · doi:10.1134/S1064562414010207
[28] D. V. Anosov and I. U. Bronshteĭn 1985 Smooth dynamical systems. Chapter 3 Dynamical systems - 1 Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr. 1 VINITI, Moscow · Zbl 0678.00020
[29] English transl. D. V. Anosov and I. U. Bronshteĭn 1988 Chapter 3. Topological dynamics D. V. Anosov, I. U. Bronshteĭn, S. Kh. Aranson and V. Z. Grines, Dynamical systems I Encyclopaedia Math. Sci. 1 Springer, Berlin 149-233 · doi:10.1007/978-3-642-61551-1_12
[30] J. S. W. Lamb and O. V. Stenkin 2004 Newhouse regions for reversible systems with infinitely many stable, unstable and elliptic periodic orbits Nonlinearity17 4 1217-1244 · Zbl 1061.37030 · doi:10.1088/0951-7715/17/4/005
[31] A. Delshams, S. V. Gonchenko, V. S. Gonchenko, J. T. Lázaro, and O. V. Sten’kin 2013 Abundance of attracting, repelling and elliptic periodic orbits in two-dimensional reversible maps Nonlinearity26 1 1-33 · Zbl 1277.37044 · doi:10.1088/0951-7715/26/1/1
[32] A. Delshams, M. Gonchenko, S. V. Gonchenko, and J. T. Lázaro 2018 Mixed dynamics of \(2\)-dimensional reversible maps with a symmetric couple of quadratic homoclinic tangencies Discrete Contin. Dyn. Syst.38 9 4483-4507 · Zbl 1397.37052 · doi:10.3934/dcds.2018196
[33] S. V. Gonchenko and L. P. Shil’nikov 1990 Invariants of \(\Omega \)-conjugacy of diffeomorphisms with a nongeneric homoclinic trajectory Ukr. Mat. Zh.42 2 153-159 · Zbl 0705.58044
[34] English transl. S. V. Gonchenko and L. P. Shil’nikov 1990 Ukrainian Math. J.42 2 134-140 · Zbl 0705.58044 · doi:10.1007/BF01071004
[35] S. V. Gonchenko and L. P. Shilnikov 1992 On moduli of systems with a structurally unstable homoclinic Poincaré curve Izv. Ross. Akad. Nauk Ser. Mat.56 6 1165-1197
[36] English transl. S. V. Gonchenko and L. P. Shilnikov 1993 Russian Acad. Sci. Izv. Math.41 3 417-445 · Zbl 0801.58034 · doi:10.1070/IM1993v041n03ABEH002270
[37] C. Conley 1978 Isolated invariant sets and the Morse index CBMS Regional Conf. Ser. in Math. 38 Amer. Math. Soc., Providence, RI · Zbl 0397.34056 · doi:10.1090/cbms/038
[38] D. Ruelle 1981 Small random perturbations of dynamical systems and the definition of attractors Comm. Math. Phys.82 1 137-151 · Zbl 0482.58017 · doi:10.1007/BF01206949
[39] M. Hurley 1982 Attractors: persistence, and density of their basins Trans. Amer. Math. Soc.269 1 247-271 · Zbl 0494.58023 · doi:10.1090/S0002-9947-1982-0637037-7
[40] D. V. Turaev and L. P. Shil’nikov 1998 An example of a wild strange attractor Mat. Sb.189 2 137-160 · Zbl 0927.37017 · doi:10.4213/sm300
[41] English transl. D. V. Turaev and L. P. Shil’nikov 1998 Sb. Math.189 2 291-314 · Zbl 0927.37017 · doi:10.1070/sm1998v189n02ABEH000300
[42] S. S. Gonchenko, A. O. Kazakov, and D. Turaev Wild pseudohyperbolic attractors in a four-dimensional Lorenz system 1809.07250
[43] A. S. Gonchenko, S. V. Gonchenko, A. O. Kazakov, and A. D. Kozlov 2018 Elements of contemporary theory of dynamical chaos: a tutorial. Part I. Pseudohyperbolic attractors Internat. J. Bifur. Chaos Appl. Sci. Engrg.28 11 1830036 · Zbl 1468.37002 · doi:10.1142/S0218127418300367
[44] S. V. Gonchenko, L. P. Shil’nikov, and D. V. Turaev 1997 Quasiattractors and homoclinic tangencies Comput. Math. Appl.34 2-4 195-227 · Zbl 0889.58056 · doi:10.1016/S0898-1221(97)00124-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.