×

The unified approach to integrable relativistic equations: Soliton solutions over nonvanishing backgrounds. II. (English) Zbl 0777.35082

Summary: In Part I (cf. the preceding review) the \(N\)-soliton solution has been constructed for the generic system associated with the \(sl(2,\mathbb{C})\) case of the scheme for the unified descripton of integrable relativistic massive fields. Here, solutions are isolated for reductions of this system, including the (conventional) complex sine-Gordon equation, the massive Thirring model and another complexification of the sine-Gordon equation defined by the Lagrangian \[ L={| \partial_ \mu\varphi |^ 2 \over 1-| \varphi |^ 2}+ | \varphi |^ 2- {J^ 2_ \mu \over 2 | \varphi |^ 2(1-| \varphi |^ 2)}, \] \(J_ \mu=i(\varphi^*\partial_ \mu \varphi-\varphi \partial_ \mu \varphi^*)\). The latter model is shown to exhibit decays and fusion of (subluminal) solitons. The reduction to the conventional complex sine- Gordon appears to be even more interesting as it cannot be defined by simply restricting the linear problem to some real form of \(sl(2,\mathbb{C})\) algebra, and the relevant involution turns out to be quite nontrivial. When the background is flat, this involution degenerates and so the \(N\)- kink solution for the reduction cannot be extracted from the generic \(N\)- kink solution directly. This difficulty is bypassed by seeing the flat background case as a limit of an exponential one.

MSC:

35Q75 PDEs in connection with relativity and gravitational theory
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
58J72 Correspondences and other transformation methods (e.g., Lie-Bäcklund) for PDEs on manifolds

Citations:

Zbl 0777.35081
Full Text: DOI

References:

[1] DOI: 10.1063/1.530403 · Zbl 0777.35081 · doi:10.1063/1.530403
[2] DOI: 10.1007/BF01218485 · doi:10.1007/BF01218485
[3] Arefeva I. Ya., Teor. Mat. Fiz. 26 pp 306– (1976)
[4] Mikhailov A. V., Pis’ma ZhETF 23 pp 356– (1976)
[5] Mikhailov A. V., JETP Lett. 23 pp 321– (1976)
[6] DOI: 10.1007/BF01036710 · doi:10.1007/BF01036710
[7] DOI: 10.1007/BF02783605 · doi:10.1007/BF02783605
[8] DOI: 10.1007/BF00420038 · Zbl 0539.35071 · doi:10.1007/BF00420038
[9] DOI: 10.1007/BF01609119 · Zbl 0996.37504 · doi:10.1007/BF01609119
[10] DOI: 10.1016/0003-4916(78)90156-2 · Zbl 0394.53016 · doi:10.1016/0003-4916(78)90156-2
[11] DOI: 10.1016/0003-4916(78)90156-2 · Zbl 0394.53016 · doi:10.1016/0003-4916(78)90156-2
[12] Getmanov B. S., Pis’ma ZhETF 25 pp 132– (1977)
[13] JETP Lett. 25 pp 119– (1977)
[14] DOI: 10.1007/BF01016833 · doi:10.1007/BF01016833
[15] DOI: 10.1103/PhysRevD.14.1524 · Zbl 0996.81509 · doi:10.1103/PhysRevD.14.1524
[16] Barashenkov I. V., Phys. Lett. A 128 pp 18– (1988)
[17] Barashenkov I. V., Yad. Fiz. 48 pp 886– (1988)
[18] Sov. J. Nucl. Phys. 48 pp 565– (1988)
[19] Budagov A. S., DAN SSSR 235 pp 805– (1977)
[20] Budagov A. S., LOMI Notices 77 pp 24– (1978)
[21] Zakharov V. E., Pis’ma ZhETF. 27 pp 47– (1978)
[22] JETP Lett. 27 pp 42– (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.