×

The generalized two-sided beta distribution with applications in project risk analysis. (English) Zbl 1517.62056

Summary: A novel smooth, three-parameter, asymmetric two-sided distribution with bounded support is constructed via a half-symmetric beta distribution. Denoting that novel asymmetric distribution the generalized two-sided beta (GTSB) distribution, it is characterized by a mode (or anti-mode) parameter together with two branch power parameters. GTSB distributions serve as a smooth alternative for generalized two-sided power distributions. Some properties of the GTSB family of distributions shall be derived. Two separate algorithms to solve for the power parameters of the GTSB distribution shall be presented. The first algorithm ensures matching of the most likely value, specified through expert judgment, as well as the PERT mean and PERT variance, popular in project management. The latter result is a novel PERT contribution by itself. The second algorithm solves for the power parameters from a lower and upper quantile constraint. The application of the GTSB distribution shall be demonstrated in illustrative PERT example(s).

MSC:

62E10 Characterization and structure theory of statistical distributions
62E15 Exact distribution theory in statistics
90B50 Management decision making, including multiple objectives
90B35 Deterministic scheduling theory in operations research
91B84 Economic time series analysis
Full Text: DOI

References:

[1] Angelopoulou A, Mykoniatis K (2022) Hybrid modelling and simulation of the effect of vaccination on the Covid-19 transmission. J Simul. doi:10.1080/17477778.2022.2062260
[2] Clark, CE, The pert model for the distribution of an activity time, Oper Res, 10, 3, 405-406 (1962) · doi:10.1287/opre.10.3.405
[3] García, C.; Pérez, JG; van Dorp, JR, Modeling heavy-tailed, skewed and peaked uncertainty phenomena with bounded support, Stat Methods Appl, 20, 463-486 (2011) · Zbl 1238.62012 · doi:10.1007/s10260-011-0173-0
[4] Gilda I (2018) Method-program evaluation and review technique. PERT method-program evaluation and review technique. https://www.projectcubicle.com/pert-method-definition-examples/. Accessed 10 Jun 2022
[5] Golenko-Ginzburg, D., Pert assumptions revisited, Omega, 17, 4, 393-396 (1989) · Zbl 0666.90034 · doi:10.1016/0305-0483(89)90053-4
[6] Grubbs, FE, Attempts to validate certain pert statistics or “picking on pert”, Oper Res, 10, 6, 912-915 (1962) · doi:10.1287/opre.10.6.912
[7] Herrerias, JM; Herrerias, R.; Van Dorp, JR, Revisiting the pert mean and variance, Eur J Oper Res, 210, 2, 448-451 (2011) · Zbl 1210.90103 · doi:10.1016/j.ejor.2010.08.014
[8] Herrerias-Velasco, JM; Herrerias-Pleguezuelo, R.; van Dorp, JR, The generalized two-sided power distribution, J Appl Stat, 36, 5, 573-587 (2009) · Zbl 1473.62045 · doi:10.1080/02664760802582850
[9] Hillier F, Hillier M (2018) Introduction to management science: a modeling and case studies approach with spreadsheets (ed.) 6th edn. McGraw-Hill, New York, NY
[10] Johnson, D., The triangular distribution as a proxy for the beta distribution in risk analysis, J R Stat Soc Series D (Stat), 46, 3, 387-398 (1997)
[11] Kamburowski, J., New validations of pert times, Omega, 25, 3, 323-328 (1997) · doi:10.1016/S0305-0483(97)00002-9
[12] Keefer, DL; Verdini, WA, Better estimation of pert activity time parameters, Manag Sci, 39, 9, 1086-1091 (1993) · Zbl 0800.90575 · doi:10.1287/mnsc.39.9.1086
[13] Kotiah, T.; Wallace, ND, Another look at the pert assumptions, Manag Sci, 20, 1, 44-49 (1973) · Zbl 0331.90024 · doi:10.1287/mnsc.20.1.44
[14] Kotz, S.; Kozubowski, T.; Podgorski, K., The laplace distribution and generalizations: a revisit with applications to communications, economics, engineering, and finance (2012), London: Springer Science & Business Media, London · Zbl 0977.62003
[15] Kotz, S.; van Dorp, JR, Beyond beta: other continuous families of distributions with bounded support and applications (2004), Singapore: World Scientific, Singapore · Zbl 1094.62012 · doi:10.1142/5720
[16] Kuklová J (2021) Highway modeling in anylogic for multi-agent approach to smart city management. In: 2021 Smart City Symposium Prague (SCSP), pp 1-6
[17] Littlefield, T. Jr; Randolph, P., Reply-an answer to Sasieni’s question on pert times, Manag Sci, 33, 10, 1357-1359 (1987) · doi:10.1287/mnsc.33.10.1357
[18] MacCrimmon, KR; Ryavec, CA, An analytical study of the pert assumptions, Oper Res, 12, 1, 16-37 (1964) · doi:10.1287/opre.12.1.16
[19] Mahmood I, Haris M, Sarjoughian H (2017) Analyzing emergency evacuation strategies for mass gatherings using crowd simulation and analysis framework: Hajj scenario. In: Proceedings of the 2017 acm sigsim conference on principles of advanced discrete simulation, pp 231-240
[20] Malcolm, DG; Roseboom, JH; Clark, CE; Fazar, W., Application of a technique for research and development program evaluation, Oper Res, 75, 646-669 (1959) · Zbl 1255.90070 · doi:10.1287/opre.7.5.646
[21] Ogden, NH; Turgeon, P.; Fazil, A.; Clark, J.; Gabriele-Rivet, V.; Tam, T.; Ng, V., Counterfactuals of effects of vaccination and public health measures on Covid-19 cases in Canada: What could have happened?-supplemental material, CCDR, 48, 7-8, 1 (2022) · doi:10.14745/ccdr.v48i78a01
[22] Pleguezuelo, RH; Pérez, JG; Rambaud, SC, A note on the reasonableness of pert hypotheses, Oper Res Lett, 31, 1, 60-62 (2003) · Zbl 1093.62517 · doi:10.1016/S0167-6377(02)00151-7
[23] R (2013) R: A language and environment for statistical computing
[24] Sasieni, M., A note on pert times, Manag Sci, 32, 12, 1652-1653 (1986) · doi:10.1287/mnsc.32.12.1652
[25] Scheffé, H., A useful convergence theorem for probability distributions, Ann Math Stat, 18, 3, 434-438 (1947) · Zbl 0032.29002 · doi:10.1214/aoms/1177730390
[26] Schilling, RL, Measures, integrals and martingales (2017), Cambridge: Cambridge University Press, Cambridge · Zbl 1360.28001
[27] Selvidge, J., Assessing the extremes of probability distributions by the fractile method, Decis Sci, 11, 3, 493-502 (1980) · doi:10.1111/j.1540-5915.1980.tb01154.x
[28] van Dorp, JR, Statistical dependence through common risk factors: with applications in uncertainty analysis, Eur J Oper Res, 161, 1, 240-255 (2005) · Zbl 1067.90122 · doi:10.1016/j.ejor.2003.06.028
[29] van Dorp, JR; Mazzuchi, TA, Three-point lifetime distribution elicitation for maintenance optimization in a Bayesian context, 147-177 (2021), London: Springer International Publishing, London · Zbl 1495.91043
[30] Vose D (2008) Risk analysis: a quantitative guide. Wiley · Zbl 0908.90061
[31] Wallis KF (2014) The two-piece normal, binormal, or double gaussian distribution: its origin and rediscoveries. Statistical Science, pp 106-112 · Zbl 1332.60009
[32] Williams, FE, Pert completion times revisited, INFORMS Trans Educ, 6, 1, 21-34 (2005) · doi:10.1287/ited.6.1.21
[33] Winston, WL; Albright, SC, Practical management science (2015), Boston: Cengage Learning, Boston
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.