×

Descendants in celestial CFT and emergent multi-collinear factorization. (English) Zbl 1461.83057

Summary: Multi-collinear factorization limits provide a window to study how locality and unitarity of scattering amplitudes can emerge dynamically from celestial CFT, the conjectured holographic dual to gauge and gravitational theories in flat space. To this end, we first use asymptotic symmetries to commence a systematic study of conformal and Kac-Moody descendants in the OPE of celestial gluons. Recursive application of these OPEs then equips us with a novel holographic method of computing the multi-collinear limits of gluon amplitudes. We perform this computation for some of the simplest helicity assignments of the collinear particles. The prediction from the OPE matches with Mellin transforms of the expressions in the literature to all orders in conformal descendants. In a similar vein, we conclude by studying multi-collinear limits of graviton amplitudes in the leading approximation of sequential double-collinear limits, again finding a consistency check against the leading order OPE of celestial gravitons.

MSC:

83E05 Geometrodynamics and the holographic principle
83C45 Quantization of the gravitational field
81R15 Operator algebra methods applied to problems in quantum theory
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics

References:

[1] Pasterski, S.; Shao, S-H; Strominger, A., Flat Space Amplitudes and Conformal Symmetry of the Celestial Sphere, Phys. Rev. D, 96, 065026 (2017) · doi:10.1103/PhysRevD.96.065026
[2] Pasterski, S.; Shao, S-H, Conformal basis for flat space amplitudes, Phys. Rev. D, 96, 065022 (2017) · doi:10.1103/PhysRevD.96.065022
[3] Pasterski, S.; Shao, S-H; Strominger, A., Gluon Amplitudes as 2d Conformal Correlators, Phys. Rev. D, 96, 085006 (2017) · doi:10.1103/PhysRevD.96.085006
[4] Lam, HT; Shao, S-H, Conformal Basis, Optical Theorem, and the Bulk Point Singularity, Phys. Rev. D, 98, 025020 (2018) · doi:10.1103/PhysRevD.98.025020
[5] Schreiber, A.; Volovich, A.; Zlotnikov, M., Tree-level gluon amplitudes on the celestial sphere, Phys. Lett. B, 781, 349 (2018) · Zbl 1398.81273 · doi:10.1016/j.physletb.2018.04.010
[6] Stieberger, S.; Taylor, TR, Strings on Celestial Sphere, Nucl. Phys. B, 935, 388 (2018) · Zbl 1398.81194 · doi:10.1016/j.nuclphysb.2018.08.019
[7] Nandan, D.; Schreiber, A.; Volovich, A.; Zlotnikov, M., Celestial Amplitudes: Conformal Partial Waves and Soft Limits, JHEP, 10, 018 (2019) · Zbl 1427.81143 · doi:10.1007/JHEP10(2019)018
[8] Y. T. A. Law and M. Zlotnikov, Poincaré constraints on celestial amplitudes, JHEP03 (2020) 085 [Erratum ibid.04 (2020) 202] [arXiv:1910.04356] [INSPIRE]. · Zbl 1437.81109
[9] Albayrak, S.; Chowdhury, C.; Kharel, S., On loop celestial amplitudes for gauge theory and gravity, Phys. Rev. D, 102, 126020 (2020) · doi:10.1103/PhysRevD.102.126020
[10] E. Casali and A. Puhm, A Double Copy for Celestial Amplitudes, arXiv:2007.15027 [INSPIRE].
[11] Law, YTA; Zlotnikov, M., Relativistic partial waves for celestial amplitudes, JHEP, 11, 149 (2020) · doi:10.1007/JHEP11(2020)149
[12] Strominger, A., Asymptotic Symmetries of Yang-Mills Theory, JHEP, 07, 151 (2014) · Zbl 1333.81273 · doi:10.1007/JHEP07(2014)151
[13] Strominger, A., On BMS Invariance of Gravitational Scattering, JHEP, 07, 152 (2014) · Zbl 1392.81215 · doi:10.1007/JHEP07(2014)152
[14] A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [INSPIRE]. · Zbl 1408.83003
[15] Cheung, C.; de la Fuente, A.; Sundrum, R., 4D scattering amplitudes and asymptotic symmetries from 2D CFT, JHEP, 01, 112 (2017) · Zbl 1373.81319 · doi:10.1007/JHEP01(2017)112
[16] Donnay, L.; Puhm, A.; Strominger, A., Conformally Soft Photons and Gravitons, JHEP, 01, 184 (2019) · Zbl 1409.81116 · doi:10.1007/JHEP01(2019)184
[17] Stieberger, S.; Taylor, TR, Symmetries of Celestial Amplitudes, Phys. Lett. B, 793, 141 (2019) · Zbl 1421.81154 · doi:10.1016/j.physletb.2019.03.063
[18] Banerjee, S., Null Infinity and Unitary Representation of The Poincaré Group, JHEP, 01, 205 (2019) · Zbl 1409.83002 · doi:10.1007/JHEP01(2019)205
[19] Pate, M.; Raclariu, A-M; Strominger, A., Conformally Soft Theorem in Gauge Theory, Phys. Rev. D, 100, 085017 (2019) · doi:10.1103/PhysRevD.100.085017
[20] Adamo, T.; Mason, L.; Sharma, A., Celestial amplitudes and conformal soft theorems, Class. Quant. Grav., 36, 205018 (2019) · Zbl 1478.81036 · doi:10.1088/1361-6382/ab42ce
[21] Puhm, A., Conformally Soft Theorem in Gravity, JHEP, 09, 130 (2020) · doi:10.1007/JHEP09(2020)130
[22] A. Guevara, Notes on Conformal Soft Theorems and Recursion Relations in Gravity, arXiv:1906.07810 [INSPIRE].
[23] Fotopoulos, A.; Taylor, TR, Primary Fields in Celestial CFT, JHEP, 10, 167 (2019) · Zbl 1427.81127 · doi:10.1007/JHEP10(2019)167
[24] Fotopoulos, A.; Stieberger, S.; Taylor, TR; Zhu, B., Extended BMS Algebra of Celestial CFT, JHEP, 03, 130 (2020) · Zbl 1435.83010 · doi:10.1007/JHEP03(2020)130
[25] Donnay, L.; Pasterski, S.; Puhm, A., Asymptotic Symmetries and Celestial CFT, JHEP, 09, 176 (2020) · Zbl 1454.81183 · doi:10.1007/JHEP09(2020)176
[26] Fan, W.; Fotopoulos, A.; Stieberger, S.; Taylor, TR, On Sugawara construction on Celestial Sphere, JHEP, 09, 139 (2020) · Zbl 1454.81186 · doi:10.1007/JHEP09(2020)139
[27] Fotopoulos, A.; Stieberger, S.; Taylor, TR; Zhu, B., Extended Super BMS Algebra of Celestial CFT, JHEP, 09, 198 (2020) · Zbl 1454.81226 · doi:10.1007/JHEP09(2020)198
[28] Fan, W.; Fotopoulos, A.; Taylor, TR, Soft Limits of Yang-Mills Amplitudes and Conformal Correlators, JHEP, 05, 121 (2019) · Zbl 1416.81150
[29] M. Pate, A.-M. Raclariu, A. Strominger and E. Y. Yuan, Celestial Operator Products of Gluons and Gravitons, arXiv:1910.07424 [INSPIRE].
[30] Banerjee, S.; Ghosh, S.; Gonzo, R., BMS symmetry of celestial OPE, JHEP, 04, 130 (2020) · Zbl 1436.83022 · doi:10.1007/JHEP04(2020)130
[31] S. Banerjee, S. Ghosh and P. Paul, MHV Graviton Scattering Amplitudes and Current Algebra on the Celestial Sphere, arXiv:2008.04330 [INSPIRE].
[32] Altarelli, G.; Parisi, G., Asymptotic Freedom in Parton Language, Nucl. Phys. B, 126, 298 (1977) · doi:10.1016/0550-3213(77)90384-4
[33] Bern, Z.; Dixon, LJ; Perelstein, M.; Rozowsky, JS, Multileg one loop gravity amplitudes from gauge theory, Nucl. Phys. B, 546, 423 (1999) · Zbl 0953.83006 · doi:10.1016/S0550-3213(99)00029-2
[34] Taylor, TR, A Course in Amplitudes, Phys. Rept., 691, 1 (2017) · Zbl 1370.81122 · doi:10.1016/j.physrep.2017.05.002
[35] Birthwright, TG; Glover, EWN; Khoze, VV; Marquard, P., Multi-gluon collinear limits from MHV diagrams, JHEP, 05, 013 (2005) · doi:10.1088/1126-6708/2005/05/013
[36] S. Banerjee and S. Ghosh, MHV Gluon Scattering Amplitudes from Celestial Current Algebras, arXiv:2011.00017 [INSPIRE].
[37] Cachazo, F.; Svrček, P.; Witten, E., MHV vertices and tree amplitudes in gauge theory, JHEP, 09, 006 (2004) · doi:10.1088/1126-6708/2004/09/006
[38] Britto, R.; Cachazo, F.; Feng, B., New recursion relations for tree amplitudes of gluons, Nucl. Phys. B, 715, 499 (2005) · Zbl 1207.81088 · doi:10.1016/j.nuclphysb.2005.02.030
[39] Britto, R.; Cachazo, F.; Feng, B.; Witten, E., Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett., 94, 181602 (2005) · doi:10.1103/PhysRevLett.94.181602
[40] Bianchi, M.; Elvang, H.; Freedman, DZ, Generating Tree Amplitudes in N = 4 SYM and N = 8 SG, JHEP, 09, 063 (2008) · Zbl 1245.81083 · doi:10.1088/1126-6708/2008/09/063
[41] He, T.; Mitra, P.; Strominger, A., 2D Kac-Moody Symmetry of 4D Yang-Mills Theory, JHEP, 10, 137 (2016) · Zbl 1390.81630 · doi:10.1007/JHEP10(2016)137
[42] Adamo, T.; Casali, E., Perturbative gauge theory at null infinity, Phys. Rev. D, 91, 125022 (2015) · doi:10.1103/PhysRevD.91.125022
[43] McLoughlin, T.; Nandan, D., Multi-Soft gluon limits and extended current algebras at null-infinity, JHEP, 08, 124 (2017) · Zbl 1381.81149 · doi:10.1007/JHEP08(2017)124
[44] Lysov, V.; Pasterski, S.; Strominger, A., Low’s Subleading Soft Theorem as a Symmetry of QED, Phys. Rev. Lett., 113, 111601 (2014) · doi:10.1103/PhysRevLett.113.111601
[45] S. Kotz, N. Balakrishnan and N. L. Johnson, Continuous multivariate distributions, Volume 1: Models and applications, John Wiley & Sons Inc. (2000), [DOI]. · Zbl 0946.62001
[46] K. Aomoto and M. Kita, Theory of hypergeometric functions, Springer-Verlag, Tokyo, Japan (2011), [DOI]. · Zbl 1229.33001
[47] Bjerrum-Bohr, NEJ; Dunbar, DC; Ita, H.; Perkins, WB; Risager, K., MHV-vertices for gravity amplitudes, JHEP, 01, 009 (2006) · doi:10.1088/1126-6708/2006/01/009
[48] R. Blumenhagen and E. Plauschinn, Introduction to conformal field theory: with applications to String theory, vol. 779, Springer (2009), Lect. Notes Phys.779 (2009) [INSPIRE]. · Zbl 1175.81001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.