×

Global spectral gap for Dirichlet-Kac random motions. (English) Zbl 1144.82042

Summary: We prove that the global spectral gap, for any Dirichlet-Kac random motion, is equal to the convergence rate of the limit motion.

MSC:

82C22 Interacting particle systems in time-dependent statistical mechanics
82C40 Kinetic theory of gases in time-dependent statistical mechanics
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
92D10 Genetics and epigenetics
Full Text: DOI

References:

[1] Barnsley, M., Turchetti, G.: A study of Boltzmann energy equations. Ann. Phys. 159, 1–61 (1985). doi: 10.1016/0003-4916(85)90191-5 · Zbl 0591.76134 · doi:10.1016/0003-4916(85)90191-5
[2] Carlen, E., Carvalho, M.C., Loss, M.: Determination of the spectral gap in Kac’s master equation and related stochastic evolutions. Acta Math. 191, 1–54 (2003). doi: 10.1007/BF02392695 · Zbl 1080.60091 · doi:10.1007/BF02392695
[3] Carlen, E., Geronimo, J., Loss, M.: Determination of the spectral gap in the Kac model for physical momentum and energy conserving collisions. Available at http://arxiv.org/abs/0705.3729v3 (2007) · Zbl 1163.82007
[4] Ferland, R.: Law of large numbers for pairwise interacting particle systems. Math. Models Methods Appl. Sci. 4, 1–15 (1994). doi: 10.1142/S0218202594000029 · Zbl 0792.60098 · doi:10.1142/S0218202594000029
[5] Ferland, R., Giroux, G.: Cutoff-type Boltzmann equations: convergence of the solution. Adv. Appl. Math. 8, 98–107 (1987). doi: 10.1016/0196-8858(87)90007-8 · Zbl 0646.60106 · doi:10.1016/0196-8858(87)90007-8
[6] Ferland, R., Giroux, G.: An exponential rate of convergence for a class of Boltzmann processes. Stoch. Stoch. Rep. 35, 79–91 (1991). doi: 10.1080/17442509108833691 · Zbl 0725.60116
[7] Hoare, M.H.: Quadratic transport and soluble Boltzmann equation. Adv. Chem. Phys. 56, 1–140 (1984) · doi:10.1002/9780470142806.ch1
[8] Johnson, N.L., Kotz, S.: Distributions in Statistics: Continuous Multivariate Distributions. Wiley, New York (1972) · Zbl 0248.62021
[9] Kac, M.: Foundations of kinetic theory. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III, pp. 171–197. University of California Press, Berkeley (1956) · Zbl 0072.42802
[10] Niu, T., Qin, Z.S., Xu, X., Liu, J.S.: Bayesian haplotype inference for multiple linked single-nucleotide polymorphisms. Am. J. Hum. Genet. 70, 157–169 (2002). doi: 10.1086/338446 · doi:10.1086/338446
[11] Matsui, T., Motoki, M., Kamatani, N.: Polynomial time approximation sampler for discretized Dirichlet distribution. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) Algorithms and Computation: 14th International Symposium, ISAAC Proceedings, Kyoto, Japan, December 15–17, 2003, pp. 676–685. Springer, Berlin (2003) · Zbl 1205.62122
[12] Orey, S.: Lecture Notes on Limit Theorems for Markov Chain Transition Probabilities. Van Nostrand Reinhold Co., London/New York/Toronto (1971) · Zbl 0295.60054
[13] Tanaka, H.: Propagation of chaos for certain purely discontinuous Markov processes with interaction. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 17, 253–272 (1970) · Zbl 0211.48403
[14] Wild, E.: On Boltzmann’s equation in the kinetic theory of gases. Proc. Camb. Phil. Soc. 47, 602–609 (1951) · Zbl 0043.43703 · doi:10.1017/S0305004100026992
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.