×

Global-scale statistical modelling of the radiative power released by vegetation fires using a doubly truncated lognormal body distribution with generalized Pareto tails. (English) Zbl 07723577

Summary: We present a statistical model with 8 parameters that combines three components, namely a truncated lognormal distribution central body with a lower and an upper tail, both consisting of Generalized Pareto (GP) distributions. We fit the model to a dataset of more than 85 million records of the logarithm of fire radiative power (FRP) at the global scale, as derived from satellite observations covering a 19-year period (2002–2021). We use the model to characterize fire activity associated to three fire macro-regimes, designated Wild, Tamed and Domesticated, and to identify a global decreasing trend in fire intensity with moderate release of FRP (10–100 MW) during 2002–2021 that is consistent with agricultural expansion and intensification. The model can be applied to the calibration of meteorological fire danger indices that are used to assist fire prevention and suppression activities.

MSC:

82-XX Statistical mechanics, structure of matter

Software:

ismev

References:

[1] Bowman, D. M.J. S.; Balch, J. K.; Artaxo, P.; Bond, W. J.; Carlson, J. M.; Cochrane, M. A.; D’Antonio, C. M.; Defries, R. S.; Doyle, J. C.; Harrison, S. P.; Johnston, F. H.; Keeley, J. E.; Krawchuk, M. A.; Kull, C. A.; Marston, J. B.; Moritz, M. A.; Prentice, I. C.; Roos, C. I.; Scott, A. C.; Swetnam, T. W.; van der Werf, G. R.; Pyne, S. J., Fire in the earth system, Science, 324, 481-484 (2009)
[2] Andela, N.; Morton, D. C.; Giglio, L.; Paugam, R.; Chen, Y.; Hantson, S.; van der Werf, G. R.; Randerson, J. T., The global fire atlas of individual fire size, duration, speed and direction, Earth Syst. Sci. Data, 11, 529-552 (2019)
[3] Andela, N.; Morton, C.; Giglio, L.; Chen, Y.; van der Werf, G. R.; Kasibhatla, P. S.; DeFries, R. S.; Collatz, G. J.; Hantson, S.; Kloster, S.; Bachelet, D.; Forrest, M.; Lasslop, G.; Li, F.; Mangeon, S.; Melton, J. R.; Yue, C.; Randerson, J. T., A human-driven decline in global burned area, Science, 356, 1356-1362 (2017)
[4] Dwyer, E.; Pereira, J. M.C.; Grégoire, J.-M.; DaCamara, C. C., Characterization of the spatio-temporal patterns of global fire activity using satellite imagery for the period 1992 to 1993, J. Biogeography, 27, 57-69 (2000)
[5] Le Page, Y.; Pereira, J. M.C.; Trigo, R. M.; DaCamara, C. C.; Oom, D.; Mota, B., Global fire activity patterns (1996-2006) and climatic influence: an analysis using the world fire atlas, Atmos. Chem. Phys., 8, 1911-1924 (2008)
[6] Otón, G.; Pereira, J. M.C.; Silva, J. M.N.; Chuvieco, E., Analysis of trends in the fire CCI global long Term Burned Area product (1982-2018), Fire, 4, 74 (2021)
[7] Wooster, M. J.; Roberts, G.; Perry, G. L.W.; Kaufman, Y. J., Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release, J. Geophys. Res., 110, D24311 (2005)
[8] Balkema, A. A.; de Haan, L., Residual life time at great age, Ann. Probab., 2, 792-804 (1974) · Zbl 0295.60014
[9] Pickands, J., Statistical inference using extreme order statistics, Ann. Statist., 3, 119-131 (1975) · Zbl 0312.62038
[10] Coles, S., An Introduction to Statistical Modeling of Extreme Values, Vol. 208 (2001), Springer: Springer London · Zbl 0980.62043
[11] de Zea Bermudez, P.; Kotz, S., Parameter estimation of the generalized Pareto distribution - Part II, J. Statist. Plann. Inference, 140, 1374-1388 (2010) · Zbl 1190.62039
[12] Naveau, P.; Huser, R.; Ribereau, P.; Hannart, A., Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection, Water Resour. Res., 52, 2753-2769 (2016)
[13] Pereira, J. M.C.; Oom, D.; Silva, P. C.; Benali, A., Wild, tamed, and domesticated: three fire macroregimes for global pyrogeography in the anthropocene, Ecol. Appl., 32, Article e2588 pp. (2022)
[14] Li, F.; Zhang, X.; Kondragunta, S.; Csiszar, I., Comparison of fire radiative power estimates from VIIRS and MODIS observations, J. Geophys. Res., 123, 4545-4563 (2018)
[15] Bowman, A. W.; Azzalini, A., Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations (1997), Oxford University Press: Oxford University Press New York · Zbl 0889.62027
[16] DaCamara, C. C.; Calado, T. J.; Ermida, S. L.; Trigo, I. F.; Amraoui, M.; Turkman, K. F., Calibration of the fire weather index over mediterranean Europe based on fire activity retrieved from MSG satellite imagery, Int. J. Wildland Fire, 23, 7, 945-958 (2014)
[17] Pinto, M. M.; DaCamara, C. C.; Trigo, I. F.; Trigo, R. M.; Turkman, K. F., Fire danger rating over Mediterranean Europe based on fire radiative power derived from meteosat, Nat. Hazards Earth Syst. Sci., 18, 515-529 (2018)
[18] Reed, W. J.; Jorgensen, M., The double pareto-lognormal distribution - a new parametric model for size distributions, Comm. Statist. Theory Methods, 33, 1733-1753 (2004) · Zbl 1134.62313
[19] Luckstead, J.; Devadoss, S., Pareto tails and log-normal body of US cities size distribution, Physica A, 465, 573-578 (2017)
[20] Luckstead, J.; Devadoss, S.; Danforth, D., The size distributions of all Indian cities, Physica A, 474, 237-249 (2017) · Zbl 1400.91444
[21] Băncescu, I.; Chivu, L.; Preda, V.; Puente-Ajovín, M.; Ramos, A., Comparisons of log-normal mixture and Pareto tails, GB2 or log-normal body of Romania’s all cities size distribution, Physica A, 526, Article 1211017 pp. (2019)
[22] Anderson, T. W.; Darling, D. A., Asymptotic theory of certain ‘goodness of fit’ criteria based on stochastic processes, Ann. Math. Stat., 23, 193-212 (1952) · Zbl 0048.11301
[23] Cox, D. R.; Oakes, D., Analysis of Survival Data (1984), Chapman and Hall: Chapman and Hall London
[24] Wilks, D. S., Statistical Methods in the Atmospheric Sciences (2006), Academic Press: Academic Press Amsterdam
[25] Giglio, L.; Descloitres, J.; Justice, C. O.; Kaufman, Y. J., An enhanced contextual fire detection algorithm for MODIS, Remote Sens. Environ., 87, 273-282 (2003)
[26] Giglio, L.; Schroeder, W.; Justice, C. O., The collection 6 MODIS active fire detection algorithm and fire products, Remote Sens. Environ., 178, 31-41 (2016)
[27] Moritz, M. A.; Morais, M. E.; Summerell, L. A.; Carlson, J. M.; Doyle, J., Wildfires, complexity, and highly optimized tolerance, Proc. Natl. Acad. Sci. USA, 102, 17912-17917 (2005)
[28] DaCamara, C. C.; Trigo, R. M.; Pinto, M. M.; Nunes, S. A.; Trigo, I. F.; Gouveia, C. M.; Rainha, M., CeaseFire: a website to assist fire managers in Portugal, (Viegas, D. X., Advances in Forest Fire Research 2018 (2018), Imprensa da Universidade de Coimbra), 941-949
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.