×

Heat transfer in multi-component gas mixtures described by extended thermodynamics. (English) Zbl 1293.76146

Summary: We analyze a heat transfer problem in multi-component mixtures of inert gases at rest, confined between two infinite parallel plates. We refer to a system of field equations from extended thermodynamics to describe the phenomenon and we derive the non-controllable boundary conditions trough a “fluctuation” principle. Analytical calculations suggest that the temperature exhibits the classical Fourier solution combined with boundary layers. Furthermore, in accordance with the expectation, non-constant mass concentrations are predicted. Their behavior depends on the gradient of the temperature field and on the ratios of the molecular masses of the mixture constituents.

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows
80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI

References:

[1] Fick A (1855) Über Diffusion. Poggendorf’s Ann Phys Chem 94:59–86 · doi:10.1002/andp.18551700105
[2] Enskog D (1911) Über eine Verall-gemeinerung der zweiten Maxwellschen Theorie der Gase. Ann Phys (Leipz) 12:56–60 · JFM 42.0980.11
[3] Enskog D (1911) Bemerkungen zu einer Fundamentalgleichung in der kinetischen Gastheorie. Ann Phys (Leipz) 12:533–539 · JFM 42.0980.12
[4] Chapman S (1918) On the kinetic theory of gas. Part II: a composite monoatomic gas: diffusion, viscosity and thermal conduction. Philos Trans R Soc Lond A 217:115–197 · JFM 46.1203.01 · doi:10.1098/rsta.1918.0005
[5] Chapman S, Dootson FW (1917) A note on thermal diffusion. Philos Mag 33:248–256 · doi:10.1080/14786440308635635
[6] Ibbs TL (1925) Thermal diffusion measurements. Proc R Soc Lond A 107:470–486 · doi:10.1098/rspa.1925.0036
[7] Powell RW (1938) Heat. Rep Prog Phys 5:164–181 · doi:10.1088/0034-4885/5/1/312
[8] Clusius K, Dickel G (1938) Neues Verfahren zur Gasentmischung und Isotopentrennung. Naturwissenschaften 26:546 · doi:10.1007/BF01675498
[9] Clusius K, Dickel G (1939) Isolierung des leichten Chlorisotops mit dem Atomgewicht 34,979 im Trennrohr. Naturwissenschaften 27:487 · doi:10.1007/BF01489237
[10] Furry WH, Jones RC, Onsager L (1939) On the theory of isotope separation by thermal diffusion. Phys Rev 55:1083–1095 · Zbl 0022.03403 · doi:10.1103/PhysRev.55.1083
[11] Leaf B, Wall FT (1942) Separation of gas mixtures by thermal diffusion. J Phys Chem 46:820–826 · doi:10.1021/j150422a004
[12] Wall FT, Holley CE (1940) Separation by thermal diffusion of mixtures of gases having the same molecular weight. J Chem Phys 8:949–953 · doi:10.1063/1.1750609
[13] Grew KE (1947) Diffusion in mixtures of the inert gases. Proc R Soc Lond A 189:402–414 · doi:10.1098/rspa.1947.0048
[14] Kosuge S, Aoki K, Takata S (2001) Heat transfer in a gas mixture between two parallel plates: finite-difference analysis of the Boltzmann equation. In: Bartel TJ, Gallis MA (eds) Rarefied gas dynamics. AIP, Marseille, pp 289–296 · Zbl 0980.76078
[15] Müller I, Ruggeri T (1998) Rational extended rational thermodynamics. Springer, New York · Zbl 0895.00005
[16] Barbera E, Brini F (2011) Heat transfer in a binary gas mixture between two parallel plates: an application of linear extended thermodynamics. Acta Mech 220:87–105 · Zbl 1386.76136 · doi:10.1007/s00707-011-0465-3
[17] Barbera E, Brini F (2011) Heat transfer in gas mixtures: advantages of an extended thermodynamics approach. Phys Lett A 375:827–831 · Zbl 1386.76136 · doi:10.1016/j.physleta.2010.12.043
[18] Barbera E, Brini F (2011) An extended thermodynamics description of stationary heat transfer in binary gas mixtures confined in radial symmetric bounded domains (submitted) · Zbl 1386.76136
[19] Heckl M, Müller I (1983) Frame dependence, entropy, entropy flux, and wave speed in mixtures of gases. Acta Mech 50:71–95 · Zbl 0555.76056 · doi:10.1007/BF01170442
[20] Liu IS (1972) Method of Lagrange multipliers for exploitation of the entropy principle. Arch Ration Mech Anal 46:131 · Zbl 0252.76003
[21] Boillat G (1974) Sur l’existence et la recherche d’équations de conservation supplémentaires pour les systèmes hyperboliques. C R Math 278:A:909 · Zbl 0279.35058
[22] Ruggeri T, Strumia A (1981) Main field and convex covariant density for quasi-linear hyperbolic systems. Relativistic fluid dynamics. Ann Inst Henri Poincaré 34:A:65 · Zbl 0473.76126
[23] Grad H (1949) On the kinetic theory of rarefied gases. Commun Pure Appl Math 2:331–407 · Zbl 0037.13104 · doi:10.1002/cpa.3160020403
[24] Grad H (1958) Principles of the kinetic theory of gases. In: Handbuch der Physik XII. Springer, Heidelberg, pp 205–294
[25] Müller I, Ruggeri T (2004) Stationary heat conduction in radially symmetric situations–an application of extended thermodynamics. J Non-Newton Fluid Mech 119:139–143 · Zbl 1071.76049 · doi:10.1016/j.jnnfm.2003.03.001
[26] Barbera E (2004) Onset of Rayleigh-Bénard convection in gases–classical and extended thermodynamics. Contin Mech Thermodyn 16:337–346 · Zbl 1066.76027 · doi:10.1007/s00161-003-0155-z
[27] Barbera E, Müller I (2006) Inherent frame dependence of thermodynamic fields in a gas. Acta Mech 184:205–216 · Zbl 1096.76049 · doi:10.1007/s00707-006-0325-8
[28] Barbera E, Müller I (2008) Secondary heat flow between confocal ellipses–an application of extended thermodynamics. J Non-Newton Fluid Mech 153:149–156 · Zbl 1273.76019 · doi:10.1016/j.jnnfm.2007.12.008
[29] Barbera E, Brini F (2010) On stationary heat conduction in 3D symmetric domains: an application of extended thermodynamics. Acta Mech 215:241–260 · Zbl 1398.76203 · doi:10.1007/s00707-010-0330-9
[30] Barbera E, Brini F (2010) Linearized Extended Thermodynamics for stationary heat conduction in a gas at rest confined to the gap between two tori. In: Greco AM, Rionero S, Ruggeri T (eds) Proceedings 15th conference on waves and stability in continuous media. World Scientific, Singapore, pp 15–20 · Zbl 1244.80002
[31] Kremer GM (1987) Extended thermodynamics of mixtures of ideal gases. Int J Eng Sci 25:95–115 · Zbl 0645.76103 · doi:10.1016/0020-7225(87)90137-6
[32] Barbera E, Valenti G (2006) Kawashima condition and acceleration waves for binary nonreacting mixtures. Acta Mech 187:203–217 · Zbl 1103.76055 · doi:10.1007/s00707-006-0379-7
[33] Barbera E, Müller I, Reitebuch D, Zhao N (2004) Determination of the boundary conditions in extended thermodynamics via fluctuation theory. Contin Mech Thermodyn 16:411–425 · Zbl 1100.82020 · doi:10.1007/s00161-003-0165-x
[34] Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys Rev 94:511–525 · Zbl 0055.23609 · doi:10.1103/PhysRev.94.511
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.