×

Scientific school of nonequilibrium aeromechanics at St. Petersburg State University. (English. Russian original) Zbl 07760649

Vestn. St. Petersbg. Univ., Math. 56, No. 3, 289-321 (2023); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 10(68), No. 3, 406-456 (2023).
Summary: The review describes the creation and development of the scientific school of Sergei Vasilyevich Vallander at the Leningrad (now St. Petersburg) State University. We discuss the achievements of the scientific school in the development of methods of the kinetic theory of gases for the simulation of nonequilibrium flows, the construction of rigorous self-consistent mathematical models of varying complexity for strong and weak deviations from equilibrium, and the application of the developed models in solving modern problems of aerodynamics. Particular attention is paid to the study of nonequilibrium kinetics and transport processes in carbon dioxide, identifying the key relaxation mechanisms of polyatomic molecules, the development of physically reasonable reduced hybrid models, and the optimization of numerical simulation of flows using modern machine-learning methods. We discuss the problems of correctly accounting for electronic excitation in modeling the kinetics and transport processes, models of equilibrium gas flows with multiple ionization, and the peculiarities of simulating bulk viscosity in polyatomic gases.

MSC:

76V05 Reaction effects in flows
Full Text: DOI

References:

[1] Kustova, E. V.; Nagnibeda, E. A., “On the 90th anniversary of the department of hydroaeromechanics of St. Petersburg State University,” Vestn. S.-Peterb. Univ., Mat., Mekh, Astron., 6, 702-706 (2019)
[2] Nagnibeda, E. A.; Rydalevskaya, M. A., “Sergei Vasil’evich Vallander. On the 100th anniversary of his birth,” Vestn. S.-Peterb. Univ., Mat., Mekh, Astron., 4, 345-354 (2017)
[3] Sinkevich, G. I.; Nazarov, A. I., Mathematical Petersburg. History, Science, Sights. Reference Guide (2018), St. Petersburg: Obraz. Proekty, St. Petersburg
[4] Lunev, V. V., Hypersonic Aerodynamics (1975), Moscow: Mashinostroenie, Moscow
[5] Chernyi, G. G., Gas Dynamics (1988), Moscow: Nauka, Moscow
[6] S. V. Vallander, “Numerical determination of aerodynamic characteristics of some wings of finite span,” Vestn. Leningr. Univ., Ser. 1: Mat., Mekh., Astron., No. 19, 106-112 (1959). · Zbl 0109.18403
[7] Vallander, S. V., Calculation of the flow around the lattice of profiles, Dokl. Akad. Nauk SSSR, 82, 345-348 (1952) · Zbl 0046.18607
[8] Vallander, S. V., Fluid flow in the turbine, Dokl. Akad. Nauk SSSR, 84, 673-676 (1952)
[9] Vallander, S. V., On the application of the singularity method in the calculation of fluid flows in radial-axial turbines, Dokl. Akad. Nauk SSSR, 123, 413-416 (1958)
[10] Vallander, S. V., New kinetic equations in the theory of monoatomic gases, Dokl. Akad. Nauk SSSR, 131, 58-60 (1960) · Zbl 0105.43401
[11] S. V. Vallander and A. V. Belova, “Integral kinetic equations for a mixture of gases with internal degrees of freedom,” Vestn. Leningr. Univ., Ser. 1: Mat., Mekh., Astron., No. 7, 81-86 (1961).
[12] Vallander, S. V., Aerodynamics of Rarefied Gases (1963), Leningrad: Leningr. Gos. Univ., Leningrad
[13] D. Enskog, “Über die grundgleichungen in der kinetischen theorie der flussigkeiten und der gase,” Ark. Mat., Astron. Fys. 21A (13) (1928). · JFM 55.0488.04
[14] Grad, H., Thermodynamik der Gase / Thermodynamics of Gases (1958), Berlin: Springer-Verlag, Berlin
[15] S. V. Vallander and E. A. Nagnibeda, “General statement of the problem of describing relaxation processes in gases with internal degrees of freedom,” Vestn. Leningr. Univ., Ser. 1: Mat., Mekh., Astron., No. 13, 77-91 (1963). · Zbl 0123.20403
[16] Vallander, S. V.; Egorova, I. A.; Rydalevskaya, M. A., “Equilibrium distribution as a solution of kinetic equations for a mixture of gases with internal degrees of freedom and chemical reactions,” Vestn. Leningr. Univ., Ser. 1: Mat., Mekh, Astron., 7, 57-70 (1964)
[17] S. V. Vallander, E. A. Nagnibeda, and M. A. Rydalevskaya, Some Questions of the Kinetic Theory of a Chemically Reacting Mixture of Gases (Leningr. Gos. Univ., Leningrad, 1977; U.S. Air Force), FASTC-ID (RS) TO-0608-93.
[18] Filippov, B. V., Kinetic equation of the adsorption monolayer, Sov. Phys. Dokl., 8, 468 (1963)
[19] Barantsev, R. G., Some problems of gas-solid surface interaction, Prog. Aerospace Sci., 13, 1-80 (1972) · doi:10.1016/0376-0421(72)90014-0
[20] V. A. Laptev and E. A. Nagnibeda, “Conditions for macroparameters at the boundary of the boundary layer in an oscillationally nonequilibrium gas,” Vestn. Leningr. Univ., Ser. 1: Mat., Mekh., Astron., No. 19, 78-84 (1979). · Zbl 0419.76018
[21] E. V. Alekseeva, R. G. Barantsev, and A. V. Shatrov, “Combination of temperature asymptotics in the boundary layer,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 8, 96-99 (1996).
[22] R. N. Miroshin, “On the ray model of the interaction of rarefied gas atoms with the surface,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 1, 74-79 (1997). · Zbl 1037.76522
[23] Aksenova, O. A.; Khalidov, I. A., Surface Roughness in Rarefied Gas Aerodynamics: Fractal and Statistical Models (2004), St. Petersburg: VVM, St. Petersburg
[24] Shakurova, L. A.; Kustova, E. V., Boundary conditions for fluid-dynamic parameters of a single-component gas flow with vibrational deactivation on a solid wall, Vestn. St. Petersburg Univ.: Math., 55, 249-256 (2022) · Zbl 1497.76081 · doi:10.1134/S1063454122020121
[25] Shakurova, L.; Kustova, E., State-specific boundary conditions for nonequilibrium gas flows in slip regime, Phys. Rev. E, 105, 034126 (2022) · doi:10.1103/PhysRevE.105.034126
[26] B. V. Filippov and V. B. Khristinich, “Kinetic equations of rarefied gas dynamics in divergent form,” in Physical Mechanics, Vol. 4: Dynamic Processes in Gases and Solids (Leningr. Gos. Univ., Leningrad, 1980), pp. 7-18 [in Russian]. · Zbl 0489.76088
[27] B. V. Filippov, “Nonequilibrium processes in the mechanics of inhomogeneous media,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 3, 127-131 (1998). · Zbl 1090.74539
[28] E. A. Nagnibeda and E. V. Kustova, Non-Equilibrium Reacting Gas Flows. Kinetic Theory of Transport and Relaxation Processes (S.-Peterb. Gos. Univ., St. Petersburg, 2003; Springer-Verlag, Berlin, 2009). · Zbl 1186.82003
[29] Kustova, E. V.; Mekhonoshina, M. A., Basic Mathematical Transformations in the Kinetic Theory of Gases (2017), St. Petersburg: S.‑Peterb. Gos. Univ., St. Petersburg
[30] Nagnibeda, E.; Kustova, E., Non-Equilibrium Reacting Gas Flows. Kinetic Theory of Transport and Relaxation Processes (2009), Berlin: Springer-Verlag, Berlin · Zbl 1186.82003 · doi:10.1007/978-3-642-01390-4
[31] Kustova, E. V.; Nagnibeda, E. A.; Shevelev, Y. D.; Syzranova, N. G., Comparison of different models for non-equilibrium CO_2 flows in a shock layer near a blunt body, Shock Waves, 21, 273-287 (2011) · doi:10.1007/s00193-011-0324-0
[32] Shevelev, Y. D.; Syzranova, N. G.; Kustova, E. V.; Nagnibeda, E. A., Numerical simulation of hypersonic flows around space vehicles descending in the Martian atmosphere, Math. Models Comput. Simul., 3, 205-224 (2011) · Zbl 1224.76088 · doi:10.1134/S2070048211020104
[33] Shevelev, Yu. D.; Syzranova, N. G.; Nagnibeda, E. A.; Kustova, E. V., Bulk-viscosity effect on CO_2 hypersonic flow around blunt bodies, Dokl. Phys., 60, 207-209 (2015) · doi:10.1134/S1028335815050031
[34] Shoev, G. V.; Bondar, E. A.; Oblapenko, G. P.; Kustova, E. V., Development and testing of a numerical simulation method for thermally nonequilibrium dissociating flows in ANSYS Fluent, Thermophys. Aeromech., 23, 151-163 (2016) · doi:10.1134/S0869864316020013
[35] Molchanova, A. N.; Kustova, E. V.; Kashkovsky, A. V.; Bondar, Ye. A., Probabilities for DSMC modelling of CO_2 vibrational kinetics, AIP Conf. Proc., 1786, 050019 (2016) · doi:10.1063/1.4967569
[36] Kunova, O. V.; Shoev, G. V.; Kudryavtsev, A. N., Numerical simulation of nonequilibrium flows by using the state-to-state approach in commercial software, Thermophys. Aeromech., 24, 7-17 (2017) · doi:10.1134/S0869864317010024
[37] Shoev, G.; Oblapenko, G.; Kunova, O.; Mekhonoshina, M.; Kustova, E., Validation of vibration-dissociation coupling models in hypersonic non-equilibrium separated flows, Acta Astronaut., 144, 147-159 (2018) · doi:10.1016/j.actaastro.2017.12.023
[38] Kosareva, A.; Shoev, G., Numerical simulation of a CO_2, CO, O_2, O, C-mixture: Validation through comparisons with results obtained in a ground-based facility and thermochemical effects, Acta Astronaut., 160, 461-478 (2019) · doi:10.1016/j.actaastro.2019.01.029
[39] Gorbachev, Yu.; Kunova, O.; Shoev, G., A non-equilibrium dissociation and vibrational relaxation model for computational fluid dynamics simulations of flows with shock waves, Phys. Fluids, 33, 126105 (2021) · doi:10.1063/5.0062628
[40] E. A. Nagnibeda and E. V. Kustova, Transport Properties of N_\(2 and CO\)_\(2\)for Nonequilibrium Flows, Report No. ESA STR-247 (European Space Agency, Noordwijk, 2005).
[41] E. A. Nagnibeda and E. V. Kustova, Transport Properties of Nonequilibrium Gas Flows, Report No. ESA STR-248 (European Space Agency, Noordwijk, 2005).
[42] E. V. Kustova, E. A. Nagnibeda, and D. Giordano, Mutual Influence Between Flow Compressibility and Chemical-Reaction Rates in Gas Mixtures, Report No. ESA STR-255 (European Space Agency, Noordwijk, 2008).
[43] Kustova, E.; Giordano, D., Cross-coupling effects in chemically non-equilibrium viscous compressible flows, Chem. Phys., 379, 83-91 (2011) · doi:10.1016/j.chemphys.2010.11.009
[44] A. Chikhaoui, J. P. Dudon, E. V. Kustova, and E. A. Nagnibeda, “Transport properties in reacting mixture of polyatomic gases,” Phys. A (Amsterdam, Neth.) 247, 526-552 (1997). doi:10.1016/S0378-4371(97)00392-0
[45] Chikhaoui, A.; Kustova, E. V., Effect of strong excitation of the CO_2 asymmetric mode on transport properties, Chem. Phys., 216, 297-315 (1997) · doi:10.1016/S0301-0104(97)00017-7
[46] Kustova, E. V.; Nagnibeda, E. A.; Chauvin, A., State-to-state nonequilibrium reaction rates, Chem. Phys., 248, 221-232 (1999) · doi:10.1016/S0301-0104(99)00213-X
[47] Capitelli, M.; Colonna, G.; Giordano, D.; Kustova, E. V.; Nagnibeda, E. A.; Tuttafesta, M.; Bruno, D., The influence of state-to-state kinetics on transport properties in a nozzle flow, Mat. Model., 11, 45-59 (1999)
[48] Armenise, I.; Capitelli, M.; Kustova, E. V.; Nagnibeda, E. A., Influence of nonequilibrium kinetics on heat transfer and diffusion near re-entering body, J. Thermophys. Heat Transfer, 13, 210-218 (1999) · Zbl 1062.76607 · doi:10.2514/2.6438
[49] Chikhaoui, A.; Dudon, J. P.; Genieys, S.; Kustova, E. V.; Nagnibeda, E. A., Multitemperature kinetic model for heat transfer in reacting gas mixture flows, Phys. Fluids, 12, 220-232 (2000) · Zbl 1149.76341 · doi:10.1063/1.870302
[50] Aliat, A.; Chikhaoui, A.; Kustova, E. V., Nonequilibrium kinetics of a radiative CO flow behind a shock wave, Phys. Rev. E, 68, 056306 (2003) · doi:10.1103/PhysRevE.68.056306
[51] Aliat, A.; Kustova, E. V.; Chikhaoui, A., State-to-state reaction rates in gases with vibration-electronic-dissociation coupling: The influence on a radiative shock heated CO flow, Chem. Phys., 314, 37-47 (2005) · doi:10.1016/j.chemphys.2005.01.016
[52] Orsini, A.; Rini, P.; Taviani, V.; Fletcher, D.; Kustova, E. V.; Nagnibeda, E. A., State-to-state simulation of nonequilibrium nitrogen stagnation line flows: Fluid dynamics and vibrational kinetics, J. Thermophys. Heat Transfer, 22, 390-398 (2008) · doi:10.2514/1.34545
[53] Armenise, I.; Kustova, E., State-to-state models for CO_2 molecules: From the theory to an application to hypersonic boundary layers, Chem. Phys., 415, 269-281 (2013) · doi:10.1016/j.chemphys.2013.01.034
[54] Armenise, I.; Reynier, P.; Kustova, E., Advanced models for vibrational and chemical kinetics applied to Mars entry aerothermodynamics, J. Thermophys. Heat Transfer, 30, 705-720 (2016) · doi:10.2514/1.T4708
[55] Armenise, I.; Kustova, E., Mechanisms of coupled vibrational relaxation and dissociation in carbon dioxide, J. Phys. Chem. A, 122, 5107-5120 (2018) · doi:10.1021/acs.jpca.8b03266
[56] Armenise, I.; Kustova, E., Effect of asymmetric mode on CO_2 state-to-state vibrational-chemical kinetics, J. Phys. Chem. A, 122, 8709-8721 (2018) · doi:10.1021/acs.jpca.8b07523
[57] Kustova, E.; Savelev, A.; Armenise, I., State-resolved dissociation and exchange reactions in CO_2 flows, J. Phys. Chem. A, 123, 10529-10542 (2019) · doi:10.1021/acs.jpca.9b08578
[58] Pietanza, L. D.; Guaitella, O.; Aquilanti, V.; Armenise, I.; Bogaerts, A.; Capitelli, M.; Colonna, G.; Guerra, V.; Engeln, R.; Kustova, E.; Lombardi, A.; Palazzetti, F.; Silva, T., Advances in non-equilibrium CO_2 plasma kinetics: A theoretical and experimental review, Eur. Phys. J. D, 75, 237 (2021) · doi:10.1140/epjd/s10053-021-00226-0
[59] Josyula, E.; Kustova, E. V.; Vedula, P., Self-diffusion of vibrational states: Impact on the heat transfer in hypersonic flows, AIP Conf. Proc., 1628, 1253-1260 (2014) · doi:10.1063/1.4902735
[60] E. Josyula, E. Kustova, P. Vedula, and J. M. Burt, “Influence of state-to-state transport coefficients on surface heat transfer in hypersonic flows,” in Proc. 52nd Aerospace Sciences Meeting, National Harbor, Md., Jan. 13-17,2014 (American Inst. of Aeronautics and Astronautics, Reston, Va., 2014), paper no. AIAA 2014-0864. doi:10.2514/6.2014-0864
[61] E. Josyula, J. M. Burt, E. V. Kustova, P. Vedula, and M. Mekhonoshina, “State-to-state kinetic modeling of dissociating and radiating hypersonic flows,” in Proc. 53rd Aerospace Sciences Meeting, Kissimmee, Florida, Jan. 5-9,2015 (American Inst. of Aeronautics and Astronautics, Reston, Va., 2015), paper no. AIAA 2015-0475. doi:10.2514/6.2015-0475
[62] Gimelshein, S. F.; Wysong, I. J.; Fangman, A. J.; Andrienko, D. A.; Kunova, O. V.; Kustova, E. V.; Garbacz, C.; Fossati, M.; Hanquist, K. M., Kinetic and continuum modeling of high-temperature oxygen and nitrogen binary mixtures, J. Thermophys. Heat Transfer, 36, 399-418 (2022) · doi:10.2514/1.T6258
[63] Gimelshein, S. F.; Wysong, I. J.; Fangman, A. J.; Andrienko, D. A.; Kunova, O. V.; Kustova, E. V.; Morgado, F.; C. Garbacz; Fossati, M.; Hanquist, K. M., Kinetic and continuum modeling of high-temperature air relaxation, J. Thermophys. Heat Transfer, 36, 870-893 (2022) · doi:10.2514/1.T6462
[64] Kustova, E.; Kremer, G. M., Chemical reaction rates and non-equilibrium pressure of reacting gas mixtures in the state-to-state approach, Chem. Phys., 445, 82-94 (2014) · doi:10.1016/j.chemphys.2014.10.019
[65] Kustova, E.; Kremer, G. M., Effect of molecular diameters on state-to-state transport properties: The shear viscosity coefficient, Chem. Phys. Lett., 636, 84-89 (2015) · doi:10.1016/j.cplett.2015.07.012
[66] Kremer, G. M.; Kunova, O.; Kustova, E.; Oblapenko, G., The influence of vibrational state-resolved transport coefficients on the wave propagation in diatomic gases, Phys. A: Stat. Mech. Its Appl., 490, 92-113 (2018) · Zbl 1514.76078 · doi:10.1016/j.physa.2017.08.019
[67] S. Chapman and T. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge Univ. Press, Camridge, 1991; Inostrannaya Literatura, Moscow, 1960). · Zbl 0098.39702
[68] Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B., Molecular Theory of Gases and Liquids (1954), New York: Wiley, New York · Zbl 0057.23402
[69] J. Fertsiger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases (North-Holland, Amsterdam, 1972; Mir, Moscow, 1976).
[70] C. S. Wang-Chang and G. E. Uhlenbeck, Transport Phenomena in Polyatomic Gases, Research Report No. CM-681 (Univ. of Michigan, 1951).
[71] Kustova, E. V.; Nagnibeda, E. A., Transport properties of a reacting gas mixture with strong vibrational and chemical nonequilibrium, Chem. Phys., 233, 57-75 (1998) · doi:10.1016/S0301-0104(98)00092-5
[72] Kustova, E. V., On the simplified state-to-state transport coefficients, Chem. Phys., 270, 177-195 (2001) · doi:10.1016/S0301-0104(01)00352-4
[73] Kustova, E. V.; Nagnibeda, E. A.; Alexandrova, T. Yu.; Chikhaoui, A., On the non-equilibrium kinetics and heat transfer in nozzle flows, Chem. Phys., 276, 139-154 (2002) · doi:10.1016/S0301-0104(01)00578-X
[74] Kustova, E. V.; Nagnibeda, E. A.; Alexandrova, T. Yu.; Chikhaoui, A., Non-equilibrium dissociation rates in expanding flows, Chem. Phys. Lett., 377, 663-671 (2003) · doi:10.1016/S0009-2614(03)01213-2
[75] Kustova, E. V.; Nagnibeda, E. A., Strong nonequilibrium effects on specific heats and thermal conductivity of diatomic gas, Chem. Phys., 208, 313-329 (1996) · doi:10.1016/0301-0104(96)00106-1
[76] Chikhaoui, A.; Nagnibeda, E. A.; Kustova, E. V.; Alexandrova, T. Yu., Modelling of dissociation-recombination in nozzles using strongly non-equilibrium vibrational distributions, Chem. Phys., 263, 111-126 (2001) · doi:10.1016/S0301-0104(00)00345-1
[77] Kustova, E.; Oblapenko, G., Reaction and internal energy relaxation rates in viscous thermochemically non-equilibrium gas flows, Phys. Fluids, 27, 016102 (2015) · Zbl 1326.76107 · doi:10.1063/1.4906317
[78] Kustova, E.; Oblapenko, G., Mutual effect of vibrational relaxation and chemical reactions in viscous multitemperature flows, Phys. Rev. E, 93, 033127 (2016) · doi:10.1103/PhysRevE.93.033127
[79] Kustova, E.; Nagnibeda, E.; Oblapenko, G.; Savelev, A.; Sharafutdinov, I., Advanced models for vibrational-chemical coupling in multi-temperature flows, Chem. Phys., 464, 1-13 (2016) · doi:10.1016/j.chemphys.2015.10.017
[80] Kustova, E. V.; Puzyreva, L., Transport coefficients in nonequilibrium gas-mixture flows with electronic excitation, Phys. Rev. E, 80, 046407 (2009) · doi:10.1103/PhysRevE.80.046407
[81] V. A. Istomin and E. V. Kustova, “Transfer coefficients of atomic nitrogen and oxygen taking into account electronic excitation,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 1, 77-86 (2010).
[82] V. A. Istomin and E. V. Kustova, “Transfer coefficients in five-component ionized mixtures of nitrogen and oxygen taking into account electronic excitation,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 2, 109-116 (2012).
[83] Istomin, V. A.; Kustova, E. V.; Mekhonoshina, M. A., Eucken correction in high-temperature gases with electronic excitation, J. Chem. Phys., 140, 184311 (2014) · doi:10.1063/1.4874257
[84] Istomin, V. A.; Kustova, E. V., Transport coefficients and heat fluxes in non-equilibrium high-temperature flows with electronic excitation, Phys. Plasmas, 24, 022109 (2017) · doi:10.1063/1.4975315
[85] Rydalevskaya, M. A., Statistical and Kinetic Models in Physico-Chemical Gas Dynamics (2003), St. Petersburg: S.-Peterb. Gos. Univ., St. Petersburg
[86] M. A. Rydalevskaya and A. A. Morozov, “Equilibrium composition and sound velocity of reacting gas mixtures,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 2, 122-130 (2012).
[87] M. A. Rydalevskaya and M. S. Romanova, “Determination of the equilibrium composition of ionized monatomic gases,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 4, 108-116 (2013).
[88] M. A. Rydalevskaya, “Simplified method for calculation of equilibrium plasma composition,” Phys. A (Amsterdam, Neth.) 476, 49-57 (2017). doi:10.1016/j.physa.2017.02.025 · Zbl 1495.82030
[89] M. S. Romanova and M. A. Rydalevskaya, “Motion integrals and sound velocity in local equilibrium flows of ionized monatomic gases,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron. 5(63) (2), 310-320 (2018). doi:10.21638/11701/spbu01.2018.211
[90] Rydalevskaya, M. A.; Shalamov, I. Yu., Reduced description of local equilibrium monatomic oxygen flows with multiple ionization, J. Phys.: Conf. Ser., 1959, 012042 (2021) · doi:10.1088/1742-6596/1959/1/012042
[91] Kustova, E. V.; Nagnibeda, E. A., On a correct description of a multi-temperature dissociating CO_2 flow, Chem. Phys., 321, 293-310 (2006) · doi:10.1016/j.chemphys.2005.08.026
[92] Armenise, I.; Kustova, E., On different contributions to the heat flux and diffusion in non-equilibrium flows, Chem. Phys., 428, 90-104 (2014) · doi:10.1016/j.chemphys.2013.11.003
[93] Kustova, E.; Mekhonoshina, M.; Kosareva, A., Relaxation processes in carbon dioxide, Phys. Fluids, 31, 046104 (2019) · doi:10.1063/1.5093141
[94] Kunova, O.; Kosareva, A.; Kustova, E.; Nagnibeda, E., Vibrational relaxation of carbon dioxide in state-to-state and multi-temperature approaches, Phys. Rev. Fluids, 5, 123401 (2020) · doi:10.1103/PhysRevFluids.5.123401
[95] Kosareva, A.; Kunova, O.; Kustova, E.; Nagnibeda, E., Four-temperature kinetic model for CO_2 vibrational relaxation, Phys. Fluids, 33, 016103 (2021) · doi:10.1063/5.0035171
[96] Kustova, E.; Mekhonoshina, M., Multi-temperature vibrational energy relaxation rates in CO_2, Phys. Fluids, 32, 096101 (2020) · doi:10.1063/5.0021654
[97] Alekseev, I. V.; Kustova, E. V., Numerical simulations of shock waves in viscous carbon dioxide flows using finite volume method, Vestn. St. Petersburg Univ.: Math., 53, 344-350 (2020) · Zbl 1457.76104 · doi:10.1134/S1063454120030024
[98] Alekseev, I.; Kustova, E., Extended continuum models for shock waves in CO_2, Phys. Fluids, 33, 096101 (2021) · doi:10.1063/5.0062504
[99] Kosareva, A.; Kunova, O.; Kustova, E.; Nagnibeda, E., Hybrid approach to accurate modeling of coupled vibrational-chemical kinetics in carbon dioxide, Phys. Fluids, 34, 026105 (2022) · doi:10.1063/5.0079664
[100] Kosareva, A.; Mekhonoshina, M.; Kustova, E., Assessment of multi-temperature relaxation models for carbon dioxide vibrational kinetics, Plasma Sources Sci. Technol., 31, 104002 (2022) · doi:10.1088/1361-6595/ac91f2
[101] Istomin, V.; Kustova, E., State-specific transport properties of partially ionized flows of electronically excited atomic gases, Chem. Phys., 485-486, 125-139 (2017) · doi:10.1016/j.chemphys.2017.01.012
[102] Kustova, E. V., Scalar forces/fluxes and reciprocity relations in flows with strong thermal and chemical non-equilibrium, AIP Conf. Proc., 1501, 1078 (2012) · doi:10.1063/1.4769661
[103] Bruno, D.; Capitelli, M.; Kustova, E.; Nagnibeda, E., Non-equilibrium vibrational distribution and transport coefficients of N_2(v)-N mixtures, Chem. Phys. Lett., 308, 463-472 (1999) · doi:10.1016/S0009-2614(99)00598-9
[104] Kustova, E. V.; Nagnibeda, E. A.; Chikhaoui, A., On the accuracy of non-equilibrium transport coefficients calculation, Chem. Phys., 270, 459-469 (2001) · doi:10.1016/S0301-0104(01)00416-5
[105] Kunova, O.; Kustova, E.; Mekhonoshina, M.; Nagnibeda, E., Non-equilibrium kinetics, diffusion and heat transfer in shock heated flows of N_2/N and O_2/O-mixtures, Chem. Phys., 463, 70-81 (2015) · doi:10.1016/j.chemphys.2015.10.004
[106] Istomin, V. A.; Kustova, E. V.; Prut’ko, K. A., Heat and radiative fluxes in strongly nonequilibrium flows behind shock waves, Vestn. St. Petersburg Univ.: Math., 55, 461-470 (2022) · Zbl 07659224 · doi:10.1134/S1063454122040094
[107] Savel’ev, A. S.; Kustova, E. V., “Limits of applicability of the Trinor-Marrone model for level-by-level dissociation rate coefficients N_2 and O_2,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh, Astron., 2, 266-277 (2015)
[108] Kunova, O.; Kustova, E.; Savelev, A., Generalized Treanor-Marrone model for state-specific dissociation rate coefficients, Chem. Phys. Lett., 659, 80-87 (2016) · doi:10.1016/j.cplett.2016.07.006
[109] Kustova, E.; Savelev, A., Generalized model for state-resolved chemical reaction rate coefficients in high-temperature air, J. Phys.: Conf. Ser., 1959, 012033 (2021) · doi:10.1088/1742-6596/1959/1/012033
[110] Kustova, E. V.; Savelev, A. S.; Lukasheva, A. A., Refinement of state-resolved models for chemical kinetics using the data of trajectory calculations, Fluid Dyn., 57, S46-S56 (2022) · Zbl 1509.76106 · doi:10.1134/S0015462822601243
[111] Kustova, E. V.; Savelev, A. S.; Kunova, O. V., Rate coefficients of exchange reactions accounting for vibrational excitation of reagents and products, AIP Conf. Proc., 1959, 060010 (2018) · doi:10.1063/1.5034671
[112] E. V. Kustova and D. V. Makarkin, “Determination of dissociation reaction cross sections by the level coefficient of reaction rate,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 4, 100-105 (2012).
[113] Baikov, B. S.; Bayalina, D. K.; Kustova, E. V., Inverse Laplace transformation for evaluation of state-specific cross sections for dissociation reaction and vibrational energy transitions, Vestn. St. Petersburg Univ.: Math., 49, 389-397 (2016) · Zbl 1384.92067 · doi:10.3103/S1063454116040038
[114] Baikov, B. S.; Bayalina, D. K.; Kustova, E. V.; Oblapenko, G. P., Inverse Laplace transform as a tool for calculation of state-specific cross sections of inelastic collisions, AIP Conf. Proc., 1786, 090005 (2016) · doi:10.1063/1.4967611
[115] Kornienko, O. V.; Kustova, E. V., “Influence of variable molecular diameter on the viscosity coefficient in the state-to-state approach,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh, Astron., 3, 457-467 (2016) · doi:10.21638/11701/spbu01.2016.314
[116] Kustova, E.; Mekhonoshina, M.; Oblapenko, G., On the applicability of simplified state-to-state models of transport coefficients, Chem. Phys. Lett., 686, 161-166 (2017) · doi:10.1016/j.cplett.2017.08.041
[117] Bechina, A. I.; Kustova, E. V., Rotational energy relaxation time of vibrationally excited molecules, Vestn. St. Petersburg Univ.: Math., 52, 81-91 (2019) · doi:10.3103/S1063454119010035
[118] Campoli, L.; Oblapenko, G. P.; Kustova, E. V., Kinetic approach to physical processes in atmospheres library in C++, Comput. Phys. Commun., 236, 244-267 (2019) · Zbl 1527.76082 · doi:10.1016/j.cpc.2018.10.016
[119] Istomin, V. A., An object-oriented software package for simulations of flow-field, transport coefficients and flux terms in non-equilibrium gas mixture flows, AIP Conf. Proc., 1959, 060006 (2018) · doi:10.1063/1.5034667
[120] E. A. Nagnibeda and K. A. Novikov, “On the role of multiquant transitions in level-by-level vibrational kinetics,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 1, 91-99 (2006).
[121] E. A. Nagnibeda and K. A. Novikov, “On relaxation of nonequilibrium vibrational distributions in a dissociating diatomic gas,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 4, 30-37 (2007).
[122] Mishina, A. I.; Kustova, E. V., Spatially homogeneous relaxation of CO molecules with resonant VE transitions, Vestn. St. Petersburg Univ.: Math., 50, 188-197 (2017) · Zbl 1370.92180 · doi:10.3103/S1063454117020108
[123] O. V. Kunova and E. A. Nagnibeda, “A level-by-level description of vibrational and chemical relaxation in air,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 3, 103-112 (2013).
[124] L. D. Mishin and E. V. Kustova, “On the influence multi-quant transitions on gas-dynamic parameters in the relaxation zone behind shock wave,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron. 3(61) (2), 300-308 (2016).
[125] Kunova, O.; Kustova, E.; Mekhonoshina, M.; Shoev, G., Numerical simulation of coupled state-to-state kinetics and heat transfer in viscous non-equilibrium flows, AIP Conf. Proc., 1786, 070012 (2016) · doi:10.1063/1.4967588
[126] Campoli, L.; Kunova, O.; Kustova, E.; Melnik, M., Models validation and code profiling in state-to-state simulations of shock heated air flows, Acta Astronaut., 175, 493-509 (2020) · doi:10.1016/j.actaastro.2020.06.008
[127] Kravchenko, D. S.; Kustova, E. V.; Mel’nik, M. Yu., Modeling of state-to-state oxygen kinetics behind reflected shock waves, Vestn. St. Petersburg Univ.: Math., 55, 281-289 (2022) · Zbl 1503.76083 · doi:10.1134/S1063454122030104
[128] Kunova, O. V.; Nagnibeda, E. A., “On the influence of models of exchange chemical reactions on the parameters of air flow behind strong shock waves,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh, Astron., 1, 124-133 (2014)
[129] Kunova, O.; Nagnibeda, E., State-to-state description of reacting air flows behind shock waves, Chem. Phys., 441, 66-76 (2014) · doi:10.1016/j.chemphys.2014.07.007
[130] Kunova, O.; Nagnibeda, E., On the influence of state-to-state distributions on exchange reaction rates in shock heated air flows, Chem. Phys. Lett., 625, 121-127 (2015) · doi:10.1016/j.cplett.2015.02.042
[131] Gorikhovskii, V. I.; Kustova, E. V., Neural-network-based approach to the description of vibrational kinetics of carbon dioxide, Vest. St. Petersburg Univ.: Math., 55, 434-442 (2022) · Zbl 1509.76074 · doi:10.1134/S1063454122040070
[132] W. H. Wurster, C. E. Treanor, and M. J. Williams, Non-Equilibrium Radiation from Shock-Heated Air, Technical Report (Calspan — Univ. of Buffalo Research Center, Buffalo, N.Y., 1991).
[133] Gorelov, V. A.; Gladyshev, M. K.; Kireev, A. Yu.; Yegorov, I. V.; Plastinin, Yu. A.; Karabadzhak, G. F., Experimental and numerical study of nonequilibrium ultraviolet NO and N_2^+ emission in shock layer, J. Thermophys. Heat Transfer, 12, 172-179 (1998) · doi:10.2514/2.6342
[134] Ibraguimova, L. B.; Sergievskaya, A. L.; Levashov, V. Yu.; Shatalov, O. P.; Tunik, Yu. V.; Zabelinskii, I. E., Investigation of oxygen dissociation and vibrational relaxation at temperatures 4000-10800 K, J. Chem. Phys., 139, 034317 (2013) · doi:10.1063/1.4813070
[135] Streicher, J. W.; Krish, A.; Hanson, R. K., Coupled vibration-dissociation timehistories and rate measurements in shock-heated, nondilute O_2 and O_2-Ar mixtures from 6000 to 14000 K, Phys. Fluids, 33, 056107 (2021) · doi:10.1063/5.0048059
[136] Baluckram, V. T.; Fangman, A. J.; Andrienko, D. A., Simulation of oxygen chemical kinetics behind incident and reflected shocks via master equation, J. Thermophys. Heat Transfer, 37, 198-212 (2023) · doi:10.2514/1.T6522
[137] Nagnibeda, E. A.; Papina, K. V., “Non-equilibrium vibrational and chemical kineticsin air flows in nozzles,” Vestn. S.-Peterb. Univ., Mat., Mekh, Astron., 5, 287-299 (2018) · doi:10.21638/11701/spbu01.2018.209
[138] Mishina, A. I.; Kustova, E. V., Kinetics of CO molecules taking into account resonant VE exchanges in a nonequilibrium nozzle flow, Tech. Phys., 63, 331-338 (2018) · doi:10.1134/S1063784218030155
[139] Kustova, E. V.; Nagnibeda, E. A.; Armenise, I.; Capitelli, M., Non-equilibrium kinetics and heat transfer in O_2/O mixtures near catalytic surfaces, J. Thermophys. Heat Transfer, 16, 238-244 (2002) · doi:10.2514/2.6673
[140] Armenise, I.; Barbato, M.; Capitelli, M.; Kustova, E. V., State-to-state catalytic models, kinetics and transport in hypersonic boundary layers, J. Thermophys. Heat Transfer, 20, 465-476 (2006) · doi:10.2514/1.18218
[141] Treanor, C. E.; Rich, I. W.; Rehm, R. G., Vibrational relaxation of anharmonic oscillators with exchange dominated collisions, J. Chem. Phys., 48, 1798 (1968) · doi:10.1063/1.1668914
[142] Kustova, E. V.; Nagnibeda, E. A., Kinetic model for multi-temperature flows of reacting carbon dioxide mixture, Chem. Phys., 398, 111-117 (2012) · doi:10.1016/j.chemphys.2011.05.019
[143] Park, C., Review of chemical-kinetic problems of future NASA missions, I: Earth entries, J. Thermophys. Heat Transfer, 7, 385-398 (1993) · doi:10.2514/3.431
[144] Park, C.; Howe, J. T.; Jaffe, R. L.; Candler, G. V., Review of chemical-kinetic problems of future NASA missions, II: Mars entries, J. Thermophys. Heat Transfer, 8, 9-23 (1994) · doi:10.2514/3.496
[145] Park, C., Nonequilibrium Hypersonic Aerothermodynamics (1990), New York: Wiley, New York
[146] Landau, L. D.; Teller, E., Theory of monomolecular reactions, Phys. Z. Sowjetunion, 10, 34-38 (1936)
[147] E. V. Kustova and G. P. Oblapenko, “Normal stresses and velocities of slow processes in high-temperature gas flows with chemical and vibrational disequilibrium,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 2, 111-120 (2013).
[148] Kustova, E.; Mekhonoshina, M., Novel approach for evaluation of CO_2 vibrational relaxation times, Chem. Phys. Lett., 764, 138288 (2021) · doi:10.1016/j.cplett.2020.138288
[149] Marrone, P. V.; Treanor, C. E., Chemical relaxation with preferential dissociation from excited vibrational levels, Phys. Fluids, 6, 1215-1221 (1963) · Zbl 0117.20003 · doi:10.1063/1.1706888
[150] Knab, O.; Frühauf, H. H.; Messerschmid, E. W., Theory and validation of the physically consistent coupled vibration-chemistry-vibration model, J. Thermophys. Heat Transfer, 9, 219-226 (1995) · doi:10.2514/3.649
[151] Kunova, O.; Nagnibeda, E.; Sharafutdinov, I., Non-equilibrium reaction rates in air flows behind shock waves. State-to-state and three-temperature description, AIP Conf. Proc., 1786, 150005 (2016) · doi:10.1063/1.4967646
[152] A. M. Kozhapenko and E. V. Kustova, “Spatially homogeneous vibrational relaxation of CO_2 in a four-temperature approximation,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 4, 13-21 (2007).
[153] Kosareva, A. A.; Nagnibeda, E. A., “Dissociation and vibrational relaxation in aspatially homogeneous mixture CO_2/CO/O,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh, Astron., 3, 468-480 (2016) · doi:10.21638/11701/spbu01.2016.315
[154] Alekseev, I. V.; Kosareva, A. A.; Kustova, E. V.; Nagnibeda, E. A., Various continuum approaches for studying shock wave structure in carbon dioxide, AIP Conf. Proc., 1959, 060001 (2018) · doi:10.1063/1.5034662
[155] Kosareva, A.; Nagnibeda, E.; Savelev, A., New multi-temperature reaction models for CO_2 containing mixtures and their applications, Chem. Phys., 533, 110718 (2020) · doi:10.1016/j.chemphys.2020.110718
[156] B. Gordiets, A. Osipov, and L. Shelepin, Kinetic Processes in Gases and Molecular Lasers (Nauka, Moscow, 1980; Gordon and Breach, New York, 1988).
[157] Olejniczak, J.; Candler, G. V.; Wright, M. J.; Leyva, I.; Hornung, H. G., Experimental and computational study of high enthalpy double-wedge flows, J. Thermophys. Heat Transfer, 13, 431-440 (1999) · doi:10.2514/2.6481
[158] M. Holden, “Experimental studies of laminar separated flows induced by shock wave/boundary layer and shock/shock interaction in hypersonic flows for CFD validation,” in Proc. 38th Aerospace Sciences Meeting and Exhibit, Reno, Nev., Jan.10-13,2000 (Americal Inst. of Aeronautics and Astronautics, Reston, Va., 2000), paper no. AIAA 2000-0930. doi:10.2514/6.2000-930
[159] M. Holden and T. Wadhams, “Code validation study of laminar shock/boundary layer and shock/shock interactions in hypersonic flow, part A: Experimental measurements,” Proc. 39th Aerospace Sciences Meeting and Exhibit, Reno, Nev., Jan. 8-11,2001 (Americal Inst. of Aeronautics and Astronautics, Reston, Va., 2001), paper no. AIAA 2001-1031. doi:10.2514/6.2001-1031
[160] E. V. Kustova and E. A. Nagnibeda, “Kinetic description of the flows of a nonequilibrium reacting mixture CO2/O2/CO/S/O in a five-temperature approximation,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 2, 19-30 (2010).
[161] B. R. Hollis and J. N. Perkins, “Hypervelocity aeroheating measurements in wake of Mars mission entry vehicle,” in Proc. 26th AIAA Fluid Dynamics Conf., San Diego, Calif., June 19-22,1995 (Americal Inst. of Aeronautics and Astronautics, Reston, Va., 1995), paper no. AIAA 95-2314.
[162] Hollis, B. R.; Perkins, J. N., High-enthalpy aerothermodynamics of a mars entry vehicle. Part 1: Experimental results, J. Spacecr. Rockets, 34, 449-456 (1997) · doi:10.2514/2.3257
[163] Kustova, E.; Alekseev, I.; Tan, L., Investigation of shock wave structure in CO_2 based on the continuum and DSMC approaches, J. Phys.: Conf. Ser., 1959, 012032 (2021) · doi:10.1088/1742-6596/1959/1/012032
[164] A. Ern and V. Giovangigli, Multicomponent Transport Algorithms (Springer-Verlag, Berlin, 1994), in Ser.: Lecture Notes in Physics, Vol. 24. · Zbl 0820.76002
[165] Mandelshtam, L. I.; Leontovich, M. A., On the theory of the sound absorption in liquids, Russ. J. Exp. Theor. Phys., 7, 438-449 (1937)
[166] Tisza, L., Supersonic absorption and Stokes viscosity relation, Phys. Rev., 61, 531-536 (1941) · doi:10.1103/PhysRev.61.531
[167] Bruno, D.; Giovangigli, V., Internal energy relaxation processes and bulk viscosities in fluids, Fluids, 7, 356 (2022) · doi:10.3390/fluids7110356
[168] Kustova, E.; Mekhonoshina, M.; Bechina, A.; Lagutin, S.; Voroshilova, Yu., Continuum models for bulk viscosity and relaxation in polyatomic gases, Fluids, 8, 48 (2023) · doi:10.3390/fluids8020048
[169] Emanuel, G., Bulk viscosity of a dilute polyatomic gas, Phys. Fluids A, 2, 2252-2254 (1990) · doi:10.1063/1.857813
[170] Meador, W. E.; Miner, G. A.; Townsend, L. W., Bulk viscosity as a relaxation parameter: Fact or fiction?, Phys. Fluids, 8, 258-261 (1996) · Zbl 1023.76576 · doi:10.1063/1.868833
[171] Cramer, M. S., Numerical estimates for the bulk viscosity of ideal gases, Phys. Fluids, 24, 066102 (2012) · doi:10.1063/1.4729611
[172] Kustova, E. V.; Mekhonoshina, M. A., Models for bulk viscosity in carbon dioxide, AIP Conf. Proc., 2132, 150006 (2019) · doi:10.1063/1.5119646
[173] Wang, Y.; Ubachs, W.; van de Water, W., Bulk viscosity of CO_2 from Rayleigh-Brillouin light scattering spectroscopy at 532 nm, J. Chem. Phys., 150, 154502 (2019) · doi:10.1063/1.5093541
[174] Elizarova, T.; Khokhlov, A.; Montero, S., Numerical simulation of shock wave structure in nitrogen, Phys. Fluids, 19, 068102 (2007) · Zbl 1182.76230 · doi:10.1063/1.2738606
[175] Kustova, E. V., On the role of bulk viscosity and relaxation pressure in nonequilibrium flows, AIP Conf. Proc., 1084, 807-812 (2009) · doi:10.1063/1.3076585
[176] Kosuge, S.; Aoki, K., Shock-wave structure for a polyatomic gas with large bulk viscosity, Phys. Rev. Fluids, 3, 023401 (2018) · Zbl 1475.82020 · doi:10.1103/PhysRevFluids.3.023401
[177] Alekseev, I. V.; Kustova, E. V., “Shock wave structure in CO_2 taking into account bulk viscosity,” Vestn. S.‑Peterb. Univ., Mat., Mekh, Astron., 4, 642-653 (2017) · doi:10.21638/11701/spbu01.2017.412
[178] Kosuge, S.; Aoki, K., Navier-Stokes equations and bulk viscosity for a polyatomic gas with temperature-dependent specific heats, Fluids, 8, 5 (2023) · doi:10.3390/fluids8010005
[179] Alsmeyer, H., Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam, J. Fluid. Mech., 74, 497-513 (1976) · doi:10.1017/S0022112076001912
[180] E. V. Kustova and M. A. Mekhonoshina, “Relaxation pressure in a mixture of N_2-N taking into account the nonequilibrium dissociation reaction,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 1, 86-95 (2012).
[181] Arima, T.; Barbera, E.; Brini, F.; Sugiyama, M., The role of the dynamic pressure in stationary heat conduction of a rarefied polyatomic gas, Phys. Lett. A, 378, 2695-2700 (2014) · Zbl 1298.76149 · doi:10.1016/j.physleta.2014.07.031
[182] Taniguchi, S.; Arima, T.; Ruggeri, T.; Sugiyama, M., Effect of the dynamic pressure on the shock wave structure in a rarefied polyatomic gas, Phys. Fluids, 26, 016103 (2014) · doi:10.1063/1.4861368
[183] Wilke, C. R., A viscosity equation for gas mixtures, J. Chem. Phys., 18, 517-519 (1950) · doi:10.1063/1.1747673
[184] Mason, E. A.; Saxena, S. C., Approximation formula for the thermal conductivity of gas mixtures, Phys. Fluids, 1, 361-369 (1958) · doi:10.1063/1.1724352
[185] Surzhikov, S. T.; Shuvalov, M. P., Checking computation data on radiative and convectional heating of next generation spacecraft, High Temp., 51, 408-420 (2013) · doi:10.1134/S0018151X13030061
[186] Hirschfelder, J. O., Heat conductivity in polyatomic or electronically excited gases. II, J. Chem. Phys., 26, 282-285 (1957) · doi:10.1063/1.1743285
[187] Capitelli, M., Transport properties of partially ionized gases, J. Phys. Colloq., 38, 227-237 (1977) · doi:10.1051/jphyscol:1977325
[188] Capitelli, M.; Celiberto, R.; Gorse, C.; Laricchiuta, A.; Minelli, P.; Pagano, D., Electronically excited states and transport properties of thermal plasmas: The reactive thermal conductivity, Phys. Rev. E, 66, 016403 (2002) · doi:10.1103/PhysRevE.66.016403
[189] Capitelli, M.; Celiberto, R.; Gorse, C.; Laricchiuta, A.; Pagano, D.; Traversa, P., Transport properties of local thermodynamic equilibrium hydrogen plasmas including electronically excited states, Phys. Rev. E, 69, 026412 (2004) · doi:10.1103/PhysRevE.69.026412
[190] Eucken, E., Über das Wärmeleitvermögen, die Spezifische Wärme und die innere Reibung der Gase, Phys. Z., 14, 324-332 (1913)
[191] Istomin, V. A.; Oblapenko, G. P., Transport coefficients in high-temperature ionized air flows with electronic excitation, Phys. Plasmas, 25, 013514 (2018) · doi:10.1063/1.5017167
[192] Bogdanova, N. V.; Rydalevskaya, M. A., “Equilibrium composition and physical and chemical characteristics of high-temperature air mixtures with diverse densities,” Vestn. S.-Peterb. Univ., Mat., Mekh, Astron., 4, 273-280 (2017) · doi:10.21638/11701/spbu01.2017.211
[193] Saha, M. N., LIII. Ionization in the solar chromosphere, London, Edinburgh, Dublin Philos. Mag. J. Sci., 40, 472-488 (1920) · doi:10.1080/14786441008636148
[194] Rydalevskaya, M. A.; Voroshilova, Yu. N., Model kinetic equations for multiply ionized gas mixtures, Front. Astron. Space Sci., 8, 696328 (2021) · doi:10.3389/fspas.2021.696328
[195] Kozak, T.; Bogaerts, A., Splitting of CO_2 by vibrational excitation in nonequilibrium plasmas: a reaction kinetics model, Plasma Sources Sci. Technol., 23, 045004 (2014) · doi:10.1088/0963-0252/23/4/045004
[196] Fridman, A., Plasma Chemistry (2008), New York: Cambridge Univ. Press, New York · doi:10.1017/CBO9780511546075
[197] Kotov, V., Two-modes approach to the state-to-state vibrational kinetics of CO_2, J. Phys. B, 53, 175104 (2020) · doi:10.1088/1361-6455/ab9d01
[198] Kotov, V., Two-modes model of the non-equilibrium plasma chemical dissociation of CO_2, Plasma Sources Sci. Technol., 30, 055003 (2021) · doi:10.1088/1361-6595/abf368
[199] Kustova, E. V.; Nagnibeda, E. A., On a correct description of a multi-temperature dissociating CO_2 flow, Chem. Phys., 321, 293-310 (2006) · doi:10.1016/j.chemphys.2005.08.026
[200] Kosareva, A.; Nagnibeda, E., Vibrational-chemical coupling in mixtures CO_2/CO/O and CO_2/CO/O_2/O/C, J. Phys.: Conf. Ser., 815, 012027 (2017) · doi:10.1088/1742-6596/815/1/012027
[201] Schwartz, R. N.; Slawsky, Z. I.; Herzfeld, K. F., Calculation of vibrational relaxation times in gases, J. Chem. Phys., 20, 1591 (1952) · doi:10.1063/1.1700221
[202] Vargas, J.; Lopez, B.; Lino da Silva, M., Heavy particle impact vibrational excitation and dissociation processes in CO_2, J. Phys. Chem. A, 125, 493-512 (2021) · doi:10.1021/acs.jpca.0c05677
[203] R. L. McKenzie and J. O. Arnold, Experimental and Theoretical Investigation of the Chemical Kinetics and Non-Equilibrium CN Radiation Behind Shock Waves in CO_\(2 -N_2 -Mixtures \), AIAA Paper No. 67-322 (American Inst. of Aeronautics and Astronautics, Reston, Va., 1967).
[204] S. A. Losev, P. V. Kozlov, L. A. Kuznetzova, V. N. Makarov, Yu. V. Romanenko, S. T. Surzhikov, and G. N. Zalogin, “Radiation of CO_2-N_2-Ar-mixture in a shock wave: Experiment and modeling,” in Proc. 3rd European Symp. on Aerothermodynamics for Space Vehicles, Estec, Noordwijk, The Netherlands, Nov. 24-26,1998 (European Space Agency, Noordwijk, 1998), pp. 437-444.
[205] Simpson, C. J. S. M.; Bridgman, K. B.; Chandler, T. R. D., Shock-tube study of vibrational relaxation in carbon dioxide, J. Chem. Phys., 49, 513-522 (1968) · doi:10.1063/1.1670105
[206] Taylor, R. L.; Bitterman, S., Survey of vibrational relaxation data for process important in the CO_2-N_2 laser system, Rev. Mod. Phys., 41, 26 (1969) · doi:10.1103/RevModPhys.41.26
[207] O. V. Achasov and D. S. Ragosin, “Rate constants of V-V exchange for CO2-GDL,” Preprint No. 16 (Inst. of Heat and Mass Transfer, Minsk, BSSR, 1986).
[208] Istomin, V. A., Similarity criteria and different approaches of kinetic theory, AIP Conf. Proc., 2132, 130005 (2019) · doi:10.1063/1.5119625
[209] Istomin, V.; Kustova, E., PAINeT: Implementation of neural networks for transport coefficients calculation, J. Phys.: Conf. Ser., 1959, 012024 (2021) · doi:10.1088/1742-6596/1959/1/012024
[210] Bushmakova, M. A.; Kustova, E. V., Modeling the vibrational relaxation rate using machine-learning methods, Vestn. St. Petersburg Univ.: Math., 55, 87-95 (2022) · Zbl 07584677 · doi:10.1134/S1063454122010022
[211] Campoli, L.; Kustova, E.; Maltseva, P., Assessment of machine learning methods for state-to-state approaches, Mathematics, 10, 928 (2022) · doi:10.3390/math10060928
[212] Gorikhovskii, V. I.; Nagnibeda, E. A., Energy exchange rate coefficients in modeling carbon dioxide kinetics: Calculation optimization, Vestn. St. Petersburg Univ.: Math., 52, 428-435 (2019) · doi:10.1134/S1063454119040046
[213] Gorikhovskii, V. I.; Nagnibeda, E. A., Optimization of CO_2 vibrational kinetics modeling in the full state-to-state approach, Vestn. St. Petersburg Univ.: Math., 53, 358-365 (2020) · Zbl 1459.65102 · doi:10.1134/S1063454120030085
[214] Rydalevskaya, M. A.; Voroshilova, Yu. N., Influence of transfer, release, and absorption of energy on vortex properties of ideal fluids, Vestn. St. Petersburg Univ.: Math., 48, 280-284 (2015) · Zbl 1370.76024 · doi:10.3103/S106345411504010X
[215] E. V. Kustova and I. A. Kushner, “Calculation of transfer coefficients in nonequilibrium mixtures of reacting gases by exact and approximate formulas,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 2, 99-106 (2005).
[216] O. V. Zharkova and M. A. Rydalevskaya, “Modeling of the structure of shock waves in a dissociating diatomic gas,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 4, 7-12 (2007).
[217] E. A. Nagnibeda, K. A. Sinitsyn, and S. S. Bazylevich, “Dissociation rate coefficients in an oscillation-nonequilibrium gas,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 3, 92-101 (2006).
[218] M. A. Rydalevskaya, “Hierarchy of relaxation times and model kinetic equations,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 2, 55-62 (2010).
[219] M. A. Rydalevskaya, S. G. Shumkov, and M. G. Ignatkova, “Relaxation gas dynamics of carbon dioxide at moderate temperatures,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 3, 129-135 (2012).
[220] E. V. Kustova and L. A. Puzyreva, “Specific heat capacity of vibrationally nonequilibrium carbon dioxide,” Vestn. S.-Peterb. Univ., Ser. 1: Mat., Mekh., Astron., No. 1, 87-93 (2005).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.