×

A general framework for the kinetic modelling of polyatomic gases. (English) Zbl 07545281

Summary: A general framework for the kinetic modelling of non-relativistic polyatomic gases is proposed, where each particle is characterized both by its velocity and by its internal state, and the Boltzmann collision operator involves suitably weighted integrals over the space of internal states. The description of the internal structure of a molecule is kept highly general, and this allows classical and semi-classical models, such as the monoatomic gas description, the continuous internal energy structure, and the description with discrete internal energy levels, to fit our framework. We prove the H-Theorem for the proposed kinetic equation of Boltzmann type in this general setting, and characterize the equilibrium Maxwellian distribution and the thermodynamic number of degrees of freedom. Euler equations are derived, as zero-order approximation in a suitable asymptotic expansion. In addition, within this general framework it is possible to build up new models, highly desirable for physical applications, where rotation and vibration are precisely described. Examples of models for the Hydrogen Fluoride gas are shown. A link between state-based and energy-based points of view is presented.

MSC:

82Cxx Time-dependent statistical mechanics (dynamic and nonequilibrium)
76Pxx Rarefied gas flows, Boltzmann equation in fluid mechanics
76-XX Fluid mechanics

Software:

Spartan

References:

[1] Nagnibeda, E.; Kustova, E., Non-Equilibrium Reacting Gas Flows (2009), Berlin: Springer, Berlin · Zbl 1186.82003 · doi:10.1007/978-3-642-01390-4
[2] Zhdanov, VM, Transport Processes in Multicomponent Plasmas (2002), London: Taylor and Francis, London · doi:10.1201/9781482265101
[3] Ruggeri, T.; Sugiyama, M., Classical and Relativistic Rational Extended Thermodynamics of Gases (2021), Berlin: Springer, Berlin · Zbl 1461.82002 · doi:10.1007/978-3-030-59144-1
[4] Xu, K., Direct Modeling For Computational Fluid Dynamics: Construction And Application Of Unified Gas-kinetic Schemes (2015), Singapore: World Scientific, Singapore · Zbl 1309.76003 · doi:10.1142/9324
[5] Toro, EF, Riemann Solvers and Numerical Methods for Fluid Dynamics (2013), Berlin: Springer, Berlin
[6] Wang-Chang, C.S., Uhlenbeck, G.E.: Transport phenomena in polyatomic gases. Research Rep. CM-681 of the Engineer. Res. Inst. of University of Michigan (1951)
[7] Groppi, M.; Spiga, G., Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas, J. Math. Chem., 26, 197-219 (1999) · Zbl 1048.92502 · doi:10.1023/A:1019194113816
[8] Giovangigli, V.: Multicomponent Flow Modeling. Series on Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, Boston (1999) · Zbl 0956.76003
[9] Borgnakke, C.; Larsen, PS, Statistical collision model for Monte Carlo simulation of polyatomic gas mixture, J. Comput. Phys., 18, 4, 405-420 (1975) · doi:10.1016/0021-9991(75)90094-7
[10] Desvillettes, L.: Sur un modèle de type Borgnakke-Larsen conduisant à des lois d’énergie non linéaires en température pour les gaz parfaits polyatomiques. Annales de la Faculté des sciences de Toulouse: Mathématiques 6, 257-262 (1997) · Zbl 0894.35086
[11] Desvillettes, L.; Monaco, R.; Salvarani, F., A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions, Europ. J. Mech. B/ Fluids, 24, 219-236 (2005) · Zbl 1060.76100 · doi:10.1016/j.euromechflu.2004.07.004
[12] Bisi, M., Spiga, G.: On kinetic models for polyatomic gases and their hydrodynamic limits. Ric. Mat. 66, 113-124 (2017) · Zbl 1373.76292
[13] Landau, LD; Lifshitz, EM, Statistical Physics (1980), Oxford: Pergamon, Oxford · JFM 64.0887.01
[14] Groppi, M.; Spiga, G., A Bhatnagar-Gross-Krook-type approach for chemically reacting gas mixtures, Phys. Fluids, 16, 4273-4284 (2004) · Zbl 1187.76189 · doi:10.1063/1.1808651
[15] Bisi, M., Groppi, M., Spiga, G.: Kinetic Bhatnagar-Gross-Krook model for fast reactive mixtures and its hydrodynamic limit. Phys. Rev. E 81, 036327 (2010)
[16] Bisi, M.; Travaglini, R., A BGK model for mixtures of monoatomic and polyatomic gases with discrete internal energy, Phys. A, 547, 124441 (2020) · Zbl 07530176 · doi:10.1016/j.physa.2020.124441
[17] Struchtrup, H., The BGK model for an ideal gas with an internal degree of freedom, Transp. Theor. Stat. Phys., 28, 369-385 (1999) · Zbl 0949.76078 · doi:10.1080/00411459908205849
[18] Andries, P., Le Tallec, P., Perlat, J.P., Perthame, B.: The Gaussian-BGK model of Boltzmann equation with small Prandtl number. Eur. J. Mech. B/Fluids 19, 813-830 (2000) · Zbl 0967.76082
[19] Brull, S., Schneider, J.: On the ellipsoidal statistical model for polyatomic gases. Continuum Mech. Thermodyn. 20, 489-508 (2009) · Zbl 1234.76046
[20] Bisi, M., Monaco, R., Soares, A.J.: A BGK model for reactive mixtures of polyatomic gases with continuous internal energy. J. Phys. A Math. Theor. 51, 125501 (2018) · Zbl 1391.76814
[21] Pavic-Colic, M.; Simic, S., Moment equations for polyatomic gases, Acta Appl. Math., 132, 469-482 (2014) · Zbl 1300.82021 · doi:10.1007/s10440-014-9928-6
[22] Arima, T.; Ruggeri, T.; Sugiyama, M., Rational extended thermodynamics of a rarefied polyatomic gas with molecular relaxation processes, Phys. Rev. E, 96, 042143 (2017) · doi:10.1103/PhysRevE.96.042143
[23] Bisi, M.; Ruggeri, T.; Spiga, G., Dynamical pressure in a polyatomic gas: interplay between kinetic theory and extended thermodynamics, Kinet. Relat. Mod., 11, 71-95 (2018) · Zbl 1376.80002 · doi:10.3934/krm.2018004
[24] Kosuge, S.; Aoki, K., Shock-wave structure for a polyatomic gas with large bulk viscosity, Phys. Rev. Fluids, 3, 023401 (2018) · doi:10.1103/PhysRevFluids.3.023401
[25] Kosuge, S.; Kuo, H-W; Aoki, K., A kinetic model for a polyatomic gas with temperature-dependent specific heats and its application to shock-wave structure, J. Stat. Phys., 177, 209-251 (2019) · Zbl 1448.76136 · doi:10.1007/s10955-019-02366-5
[26] Taniguchi, S.; Arima, T.; Ruggeri, T.; Sugiyama, M., Overshoot of the non-equilibrium temperature in the shock wave structure of a rarefied polyatomic gas subject to the dynamic pressure, Int. J. Non-Linear Mech., 79, 66-75 (2016) · doi:10.1016/j.ijnonlinmec.2015.11.003
[27] Pavic-Colic, M.; Madjarevic, D.; Simic, S., Polyatomic gases with dynamic pressure: Kinetic non-linear closure and the shock structure, Int. J. Non-Linear Mech., 92, 160-175 (2017) · doi:10.1016/j.ijnonlinmec.2017.04.008
[28] Funagane, H., Takata, S., Aoki, K., Kugimoto, K.: Poiseuille flow and thermal transpiration of a rarefied polyatomic gas through a circular tube with applications to microflows. Bollettino dell’Unione Matematica Italiana Ser. 9(4), 19-46 (2011) · Zbl 1431.76110
[29] Wu, L.; White, C.; Scanlon, TJ; Reese, JM; Zhang, Y., A kinetic model of the Boltzmann equation for non-vibrating polyatomic gases, J. Fluid Mech., 763, 24-50 (2015) · doi:10.1017/jfm.2014.632
[30] Hattori, M.; Kosuge, S.; Aoki, K., Slip boundary conditions for the compressible Navier-Stokes equations for a polyatomic gas, Phys. Rev. Fluids, 3, 063401 (2018) · doi:10.1103/PhysRevFluids.3.063401
[31] Herzberg, G., Molecular Spectra and Molecular Structure (1950), New York: Van Nostrand Reinold, New York
[32] Kunova, O., Kosareva, A., Kustova, E., Nagnibeda, N.: Vibrational relaxation of carbon dioxide in state-to-state and multitemperature approaches. Phys. Rev. Fluids 5, 123401 (2020)
[33] Mathiaud, J.; Mieussens, L., BGK and Fokker-Planck models of the Boltzmann equation for gases with discrete levels of vibrational energy, J. Stat. Phys., 178, 5, 1076-1095 (2020) · Zbl 1437.82020 · doi:10.1007/s10955-020-02490-7
[34] Dauvois, Y.; Mathiaud, J.; Mieussens, L., An ES-BGK model for polyatomic gases in rotational and vibrational nonequilibrium, Eur. J. Mech. B/Fluids, 88, 1-16 (2021) · Zbl 1494.76074 · doi:10.1016/j.euromechflu.2021.02.006
[35] Arima, T.; Ruggeri, T.; Sugiyama, M., Rational extended thermodynamics of dense polyatomic gases incorporating molecular rotation and vibration, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 378, 2170, 20190176 (2020) · Zbl 1462.82054 · doi:10.1098/rsta.2019.0176
[36] Bruno, D.; Giovangigli, V., Relaxation of internal temperature and volume viscosity, Phys. Fluids, 23, 093104 (2011) · doi:10.1063/1.3640083
[37] Aoki, K.; Bisi, M.; Groppi, M.; Kosuge, S., Two-temperature Navier-Stokes equations for a polyatomic gas derived from kinetic theory, Phys. Rev. E, 102, 023104 (2020) · doi:10.1103/PhysRevE.102.023104
[38] Panesi, M.; Munafò, A.; Magin, TE; Jaffe, RL, Nonequilibrium shock-heated nitrogen flows using a rovibrational state-to-state method, Phys. Rev. E, 90, 013009 (2014) · doi:10.1103/PhysRevE.90.013009
[39] McCourt, F.R., Beenakker, J.J., Köhler, W.E., Kuščer, I.: Non Equilibrium Phenomena in Polyatomic Gases. Volume I: Dilute Gases. Clarendon Press, Oxford (1990)
[40] Bisi, M., Groppi, M., Spiga, G.: A kinetic model for bimolecular chemical reactions. Kinetic Methods for Nonconservative and Reacting Systems, Aracne Editrice, Naples (2005) · Zbl 1121.82032
[41] Groppi, M., Polewczak, J.: On two kinetic models for chemical reactions: comparisons and existence results. J. Stat. Phys. 117, 211-241 (2004) · Zbl 1206.82080
[42] Giovangigli, V., Multicomponent flow modeling, Sci China Math, 55, 2, 285-308 (2012) · Zbl 1238.35064 · doi:10.1007/s11425-011-4346-y
[43] Ferziger, JH; Kaper, HG, Mathematical Theory of Transport Processes in Gases (1972), Amsterdam: North Holland, Amsterdam
[44] Waldmann, L.: Transporterscheinungen in gasen von mittlerem druck. Handbuch der Physik, S. Flügge ed., 12, pp. 295-514. Springer, Berlin (1958)
[45] Ern, A., Giovangigli, V.: Multicomponent Transport Algorithms. Lecture Notes in Physics Monographs M 24. Springer, Berlin (1994) · Zbl 0820.76002
[46] McCourt, FR; Snider, RF, Transport properties of gases with rotational states, J. Chem. Phys., 41, 3185-3194 (1964) · doi:10.1063/1.1725695
[47] Bouchut, F.; Golse, F.; Pulvirenti, M., Kinetic Equations and Asymptotic Theory (2000), Paris: Elsevier, Paris · Zbl 0979.82048
[48] Hehre, WJ, A Guide to Molecular Mechanics and Quantum Chemical Calculations (2003), Irvine: Wavefunction, Irvine
[49] Huang, K.: Statistical Mechanics, 2nd edn. Wiley, New York (1963,1987)
[50] Van Vleck, J.H.: The coupling of angular momentum vectors in molecules. Rev. Mod. Phys. 23(3), 213-227 (1951) · Zbl 0044.44408
[51] Haynes, WM, CRC Handbook of Chemistry and Physics (2016), Cambridge: CRC Press, Cambridge · doi:10.1201/9781315380476
[52] Morse, P.M.: Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. 34(1), 57-64 (1929) · JFM 55.0539.02
[53] Magin, TE; Panesi, M.; Bourdon, A.; Jaffe, RL; Schwenke, DW, Coarse-grain model for internal energy excitation and dissociation of molecular nitrogen, Chem. Phys., 398, 90-95 (2012) · doi:10.1016/j.chemphys.2011.10.009
[54] Waldmann, L.: Die Boltzmann-Gleichung für gase mit rotierenden molekülen. Zeitschr. Naturforschg. 12a, 660-662 (1957) · Zbl 0079.21902
[55] Snider, RF, Quantum-mechanical modified Boltzmann equation for degenerate internal states, J. Chem. Phys., 32, 1051-1060 (1960) · doi:10.1063/1.1730847
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.