×

Hopf bifurcation for a spatially and age structured population dynamics model. (English) Zbl 1348.37112

This paper studies a spatially and age-structured population dynamics model which describes the growth of trees, subject to a Ricker-type birth limitation. This model is restated as an abstract nonlocal problem on \(Y\times L^1((0,\infty),Y)\), where \(Y=L^1((0,1),\mathbb{R})\), and subsequently studied using a Hopf bifurcation theorem for abstract non-densely defined Cauchy problems obtained in [Z. Liu et al., Z. Angew. Math. Phys. 62, No. 2, 191–222 (2011; Zbl 1242.34112)].
The existence of Hopf bifurcations, which occur at a positive age-dependent steady state of the model, is obtained via an analysis of the spectrum of the non-densely defined linear part. This analysis is significantly more complicated than its counterpart for the corresponding model without spatial structure, yielding a first example for the occurrence of a Hopf bifurcation for a spatially and age-structured population dynamics model. The predicted Hopf bifurcations are then illustrated via numerical simulations.

MSC:

37L10 Normal forms, center manifold theory, bifurcation theory for infinite-dimensional dissipative dynamical systems
37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems
35B32 Bifurcations in context of PDEs
92D25 Population dynamics (general)

Citations:

Zbl 1242.34112
Full Text: DOI

References:

[1] S. Bertoni, Periodic solutions for non-linear equations of structured populations,, J. Math. Anal. Appl., 220, 250 (1998) · Zbl 0914.35009 · doi:10.1006/jmaa.1997.5878
[2] P. Bi, Hopf bifurcation in an age-dependent population model with delayed birth process,, I. J. Bifurcation and Chaos, 22 (2012) · Zbl 1270.35383 · doi:10.1142/S0218127412501465
[3] C. Castillo-Chavez, Epidemiological models with age structure, proportionate mixing, and cross-immunity,, J. Math. Biol., 27, 233 (1989) · Zbl 0715.92028 · doi:10.1007/BF00275810
[4] J. Chu, Hopf bifurcation in a size-structured population dynamic model with random growth,, Journal of Differential Equations, 247, 956 (2009) · Zbl 1172.35322 · doi:10.1016/j.jde.2009.04.003
[5] J. Chu, Hopf bifurcation for a size structured model with resting phase,, Discrete and Continuous Dynamical Systems, 33, 4891 (2013) · Zbl 1277.35040 · doi:10.3934/dcds.2013.33.4891
[6] J. Chu, Hopf bifurcation for a maturity structured population dynamic model,, J. Nonlinear Sci., 21, 521 (2011) · Zbl 1229.35011 · doi:10.1007/s00332-010-9091-9
[7] M. G. Crandall, The Hopf bifurcation theorem in infinite dimensions,, Arch. Rational Mech. Anal., 67, 53 (1977) · Zbl 0385.34020 · doi:10.1007/BF00280827
[8] J. M. Cushing, Model stability and instability in age structured populations,, J. Theoret. Biol., 86, 709 (1980) · doi:10.1016/0022-5193(80)90307-0
[9] J. M. Cushing, Bifurcation of time periodic solutions of the McKendrick equations with applications to population dynamics,, Comput. Math. Appl., 9, 459 (1983) · Zbl 0533.92014 · doi:10.1016/0898-1221(83)90060-3
[10] A. Ducrot, Travelling waves for a size and space structured model in population dynamics: Point to sustained oscillating solution connections,, Journal of Differential Equations, 250, 410 (2011) · Zbl 1217.34108 · doi:10.1016/j.jde.2010.09.019
[11] A. Ducrot, Essential growth rate for bounded linear perturbation of non densely defined Cauchy problems,, J. Math. Anal. Appl., 341, 501 (2008) · Zbl 1142.34036 · doi:10.1016/j.jmaa.2007.09.074
[12] A. Ducrot, Nonlinear boundary conditions derived by singular perturbation in age structured population dynamics model,, J. Appl. Anal. Comput., 1, 373 (2011) · Zbl 1304.92109
[13] M. Doumic, A structured population model of cell differentiation,, SIAM J. Appl. Math., 71, 1918 (2011) · Zbl 1235.35030 · doi:10.1137/100816584
[14] H. Inaba, Mathematical analysis for an evolutionary epidemic model,, in Mathematical Models in Medical and Health Sciences (eds. M. A. Horn, 213 (1998) · Zbl 0981.92027
[15] H. Inaba, Endemic threshold and stability in an evolutionary epidemic model,, in Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, 337 (2002) · Zbl 1022.92034 · doi:10.1007/978-1-4613-0065-6_19
[16] T. Kostova, Oscillations and stability due to juvenile competitive effects on adult fertility,, Comput. Math. Appl., 32, 57 (1996) · Zbl 0882.92026 · doi:10.1016/S0898-1221(96)00197-6
[17] Z. Liu, Hopf bifurcation for non-densely defined Cauchy problems,, Zeitschrift fur Angewandte Mathematik und Physik, 62, 191 (2011) · Zbl 1242.34112 · doi:10.1007/s00033-010-0088-x
[18] P. Magal, Compact attractors for time-periodic age structured population models,, Electron. J. Differential Equations, 2001, 1 (2001) · Zbl 0992.35019
[19] P. Magal, Center manifolds for semilinear equations with non-dense domain and applications to Hopf bifurcation in age structured models,, Mem. Amer. Math. Soc., 202 (2009) · Zbl 1191.35045 · doi:10.1090/S0065-9266-09-00568-7
[20] P. Magal, On semilinear Cauchy problems with non-dense domain,, Advances in Differential Equations, 14, 1041 (2009) · Zbl 1225.47042
[21] P. Magal, Sustained oscillations in an evolutionary epidemiological model of influenza A drift,, Proc. R. Soc. A, 466, 965 (2010) · Zbl 1195.35290 · doi:10.1098/rspa.2009.0435
[22] K. Pakdaman, Dynamics of a structured neuron population,, Nonlinearity, 23, 55 (2010) · Zbl 1267.35239 · doi:10.1088/0951-7715/23/1/003
[23] J. Prüss, On the qualitative behaviour of populations with age-specific interactions,, Comput. Math. Appl., 9, 327 (1983) · Zbl 0537.92017 · doi:10.1016/0898-1221(83)90020-2
[24] W. E. Ricker, Stock and recruitment,, J. Fish. Res. Board Canada, 11, 559 (1954) · doi:10.1139/f54-039
[25] W. E. Ricker, Computation and interpretation of biological studies of fish populations,, Bull. Fish. Res. Bd. Canada, 191 (1975)
[26] Y. Su, Periodicity and synchronization in blood-stage malaria infection,, Journal of Mathematical Biology, 63, 557 (2011) · Zbl 1311.92182 · doi:10.1007/s00285-010-0381-5
[27] J. H. Swart, Hopf bifurcation and the stability of nonlinear age-dependent population models,, Comput. Math. Appl., 15, 555 (1988) · Zbl 0649.92020 · doi:10.1016/0898-1221(88)90280-5
[28] H. R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators,, Differential Integral Equations, 3, 1035 (1990) · Zbl 0734.34059
[29] H. R. Thieme, Integrated semigroups and integrated solutions to abstract Cauchy problems,, J. Math. Anal. Appl., 152, 416 (1990) · Zbl 0738.47037 · doi:10.1016/0022-247X(90)90074-P
[30] H. R. Thieme, Quasi-compact semigroups via bounded perturbation,, in Advances in Mathematical Population Dynamics-Molecules, 691 (1997) · Zbl 0945.47033
[31] Z. Wang, Hopf bifurcation of an age-structured compartmental pest-pathogen model,, J. Math. Anal. Appl., 385, 1134 (2012) · Zbl 1242.34091 · doi:10.1016/j.jmaa.2011.07.038
[32] J. Wu, <em>Theory and Applications of Partial Functional-Differential Equations</em>,, Springer-Verlag (1996) · Zbl 0870.35116 · doi:10.1007/978-1-4612-4050-1
[33] P. Zhang, A schistosomiasis model with an age structure in human hosts and its application to treatment strategies,, Math. Biosci., 205, 83 (2007) · Zbl 1106.92050 · doi:10.1016/j.mbs.2006.06.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.