×

Time-fractional Burgers equation for dust acoustic waves in a two different temperatures dusty plasma. (English) Zbl 1284.82059

Summary: The reductive perturbation method has been used to derive the Burgers equation for dust acoustic shock waves in unmagnetized plasma having electrons, singly charged ions, hot and cold dust species with Boltzmann distributions for electrons and ions in the presence of the cold (hot) dust viscosity coefficients. The time-fractional Burgers equation is formulated using Euler-Lagrange variational technique and is solved using the variational-iteration method. The effect of time fractional parameter on the behavior of the shock waves in the dusty plasma has been investigated.

MSC:

82D10 Statistical mechanics of plasmas
76L05 Shock waves and blast waves in fluid mechanics
85A30 Hydrodynamic and hydromagnetic problems in astronomy and astrophysics
82B05 Classical equilibrium statistical mechanics (general)
Full Text: DOI

References:

[1] Abo el Maaty, M.I., El-Shewy, E.K., Abdelwahed, H.G., Elmessary, M.A.: Propagation of dust acoustic solitary waves in Saturn f-ring’s region. Electron. J. Theor. Phys. 7(24), 151-162 (2010) · Zbl 1194.35323
[2] Alinejad, H.: Dust ion-acoustic solitary and shock waves in dusty plasma with non-thermal electrons. Astrophys. Space Sci. 327, 131-137 (2010) · Zbl 1187.85024 · doi:10.1007/s10509-010-0296-z
[3] Atanacković, T.M., Konjik, S., Pilipović, S.: Variational problems with fractional derivatives: Euler-Lagrange equations. J. Phys. A, Math. Theor. 41(9), 095201 (2008). 12 pp. · Zbl 1175.49020 · doi:10.1088/1751-8113/41/9/095201
[4] Agrawal, O.P.: Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272(1), 368-379 (2002) · Zbl 1070.49013 · doi:10.1016/S0022-247X(02)00180-4
[5] Agrawal, O.P.: Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A, Math. Theor. 40(24), 6287-6303 (2007) · Zbl 1125.26007 · doi:10.1088/1751-8113/40/24/003
[6] Agrawal, O.P.: A general finite element formulation for fractional variational problems. J. Math. Anal. Appl. 337(1), 1-12 (2008) · Zbl 1123.65059 · doi:10.1016/j.jmaa.2007.03.105
[7] Akhtar, N., Mahmood, S., Saleem, H.: Dust acoustic solitary waves in the presence of hot and cold dust. Phys. Lett. A 361(1-2), 126-132 (2007) · doi:10.1016/j.physleta.2006.09.017
[8] Ashrafi, K.S., Mamun, A.A., Shukla, P.K.: Time-dependent cylindrical and spherical dust-acoustic solitary and shock waves in a strongly coupled dusty plasma in the presence of polarization force. Europhys. Lett. 92(1), 15004 (2010) · doi:10.1209/0295-5075/92/15004
[9] Barkan, A., D’Angelo, N., Merlino, R.L.: Charging of dust grains in a plasma. Phys. Rev. Lett. 73, 3093-3096 (1994) · doi:10.1103/PhysRevLett.73.3093
[10] Bhalekar, S., Daftardar-Gejji, V., Baleanu, D., Magin, R.: Fractional Bloch equation with delay. Comput. Math. Appl. 61(5), 1355-1365 (2011) · Zbl 1217.34123 · doi:10.1016/j.camwa.2010.12.079
[11] D’Angelo, N.: Low-frequency waves in collisional positive dust plasmas. J. Phys. D, Appl. Phys. 37, 860-862 (2004) · doi:10.1088/0022-3727/37/6/009
[12] El-Shewy, E.K., Abo el Maaty, M.I., Abdelwahed, H.G., Elmessary, M.A.: Improved dust acoustic solitary waves in two temperature dust fluids. Appl. Appl. Phys. 5(1), 26-41 (2010) · Zbl 1194.35323
[13] El-Shewy, E.K., Abo el Maaty, M.I., Abdelwahed, H.G., Elmessary, M.A.: Dust acoustic solitary waves in Saturn F-ring’s region. Commun. Theor. Phys. 55, 143-150 (2011a) · Zbl 1345.76122 · doi:10.1088/0253-6102/55/1/26
[14] El-Shewy, E.K., Abdelwahed, H.G., Elmessary, M.A.: Dust acoustic shock waves in two temperatures charged dusty grains. Phys. Plasmas 18(11), 113702 (2011b) · Zbl 1345.76122 · doi:10.1063/1.3654041
[15] El-Wakil, S.A., Abulwafa, E.M., El-Shewy, E.K., Mahmoud, A.A.: Time-fractional KdV equation for plasma of two different temperature electrons and stationary ion. Phys. Plasmas 18(9), 092116 (2011a) · doi:10.1063/1.3640533
[16] El-Wakil, S.A., Abulwafa, E.M., El-Shewy, E.K., Mahmoud, A.A.: Time-fractional KdV equation for electron-acoustic waves in plasma of cold electron and two different temperature isothermal ions. Astrophys. Space Sci. 333(1), 269-276 (2011b) · doi:10.1007/s10509-011-0629-6
[17] El-Wakil, S.A., Abulwafa, E.M., Zahran, M.A., Mahmoud, A.A.: Formulation of some fractional evolution equations used in mathematical physics. Nonlinear Sci. Lett. A, Math. Phys. Mech. 2(1), 37-46 (2011c)
[18] Espinosa-Paredes, G., Polo-Labarrios, M.-A., Díaz-González, L., Vázquez-Rodríguez, A., Espinosa-Martínez, E.-G.: Sensitivity and uncertainty analysis of the fractional neutron point kinetics equations. Ann. Nucl. Energy 42(1), 169-174 (2012) · doi:10.1016/j.anucene.2011.11.023
[19] Heymans, N.: Fractional calculus description of non-linear viscoelastic behaviour of polymers. Nonlinear Dyn. 38(1), 221-231 (2004) · Zbl 1142.74312 · doi:10.1007/s11071-004-3757-5
[20] He, J.H.: A new approach to nonlinear partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 2(4), 230-235 (1997a) · Zbl 0923.35046 · doi:10.1016/S1007-5704(97)90007-1
[21] He, J.H.: Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbo-machinery aerodynamics. Int. J. Turbo Jet-Engines 14(1), 23-28 (1997b)
[22] He, J.H.: Variational principles for some nonlinear partial differential equations with variable coefficients. Chaos Solitons Fractals 19, 847-851 (2004) · Zbl 1135.35303 · doi:10.1016/S0960-0779(03)00265-0
[23] Ghosh, U.N., Ghosh, D.K., Chatterjee, P., Sahu, B.: Superthermal effect of electrons on nonplanar dust-ion-acoustic solitary waves and double layers in a dusty plasma. Astrophys. Space Sci. 342, 449-456 (2012) · Zbl 1286.82025 · doi:10.1007/s10509-012-1195-2
[24] Klimik, M.: Fractional sequential mechanics-models with symmetric fractional derivative. Czechoslov. J. Phys. 51(12), 1348-1354 (2001) · Zbl 1064.70507 · doi:10.1023/A:1013378221617
[25] Mamun, A.A., Cairns, R.A.: Dust-acoustic shock waves due to strong correlation among arbitrarily charged dust. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 79(5), 055401 (2009) · doi:10.1103/PhysRevE.79.055401
[26] Mamun, A.A., Ashrafi, K.S., Shukla, P.K.: Effects of polarization force and effective dust temperature on dust-acoustic solitary and shock waves in a strongly coupled dusty plasma. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 82(2), 026405 (2010) · doi:10.1103/PhysRevE.82.026405
[27] Masood, W., Rizvi, H., Jehan, N., Siddiq, M.: Dissipative cylindrical fast magnetoacoustic waves in planetary magnetospheres. Astrophys. Space Sci. 335, 405-413 (2011) · Zbl 1230.85017 · doi:10.1007/s10509-011-0728-4
[28] Mendis, D.A., Rosenberg, M.: Cosmic dusty plasma. Annu. Rev. Astron. Astrophys. 32, 419-463 (1994) · doi:10.1146/annurev.aa.32.090194.002223
[29] Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equation. Wiley, New York (1993) · Zbl 0789.26002
[30] Nakamura, Y., Sarma, A.: Observation of ion-acoustic solitary waves in a dusty plasma. Phys. Plasmas 8(6), 3921-3926 (2001) · doi:10.1063/1.1387472
[31] Nakamura, Y., Bailung, H., Shukla, P.K.: Observation of ion-acoustic shocks in a dusty plasma. Phys. Rev. Lett. 83, 1602-1605 (1999) · doi:10.1103/PhysRevLett.83.1602
[32] Popel, S.I., Gisko, A.A., Golub, A.P., Losseva, T.V., Bingham, R., Shukla, P.K.: Shock waves in charge-varying dusty plasmas and the effect of electromagnetic radiation. Phys. Plasmas 7(6), 2410-2416 (2000) · doi:10.1063/1.874079
[33] Pakzad, H.R.: Dust acoustic solitary waves in dusty plasma with nonthermal ions. Astrophys. Space Sci. 324, 41-45 (2009) · Zbl 1181.85037 · doi:10.1007/s10509-009-0144-1
[34] Pakzad, H.R.: Ion acoustic shock waves in dissipative plasma with superthermal electrons and positrons. Astrophys. Space Sci. 331, 169-174 (2011) · Zbl 1209.85019 · doi:10.1007/s10509-010-0424-9
[35] Pakzad, H.R., Javidan, K.: Dust acoustic solitary and shock waves in strongly coupled dusty plasmas with nonthermal ions. Pramana J. Phys. 73(5), 913-926 (2009) · doi:10.1007/s12043-009-0158-9
[36] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999) · Zbl 0918.34010
[37] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, New York (2006) · Zbl 1092.45003
[38] Rahman, A., Sayed, F., Mamun, A.A.: Dust ion-acoustic shock waves in an adiabatic dusty plasma. Phys. Plasmas 14, 034503 (2007) · doi:10.1063/1.2712191
[39] Rahman, A., Mamun, A.A., Khurshed Alam, S.M.: Shock waves in a dusty plasma with dust of opposite polarities. Astrophys. Space Sci. 315, 243 (2008) · doi:10.1007/s10509-008-9824-5
[40] Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 53(2), 1890-1899 (1996) · doi:10.1103/PhysRevE.53.1890
[41] Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 55(3), 3581-3592 (1997) · doi:10.1103/PhysRevE.55.3581
[42] Rabei, E.M., Muslih, S.I., Baleanu, D.: Quantization of fractional systems using WKB approximation. Commun. Nonlinear Sci. Numer. Simul. 15(4), 807-811 (2010) · Zbl 1221.81074 · doi:10.1016/j.cnsns.2009.05.022
[43] Sayed, F., Mamun, A.A.: Solitary potential in a four-component dusty plasma. Phys. Plasmas 14, 014501 (2007) · doi:10.1063/1.2408401
[44] Shahmansouri, M., Tribeche, M.: Dust acoustic localized structures in an electron depleted dusty plasma with two-suprathermal ion-temperature. Astrophys. Space Sci. 342, 87-92 (2012) · doi:10.1007/s10509-012-1149-8
[45] Shukla, P.K., Mamun, A.A.: Introduction to Dusty Plasma Physics. Institute of Physics, Bristol (2002) · doi:10.1887/075030653X
[46] Shukla, P.K., Mamun, A.A.: Solitons, shocks and vortices in dusty plasmas. New J. Phys. 5, 17 (2003) · doi:10.1088/1367-2630/5/1/317
[47] Shukla, P.K., Mamun, A.A.: Dust-acoustic shocks in a strongly coupled dusty plasma. IEEE Trans. Plasma Sci. 29, 221-225 (2001) · doi:10.1109/27.923698
[48] Singh, S.V., Rao, N.N.: Adiabatic dust-acoustic waves with dust-charge fluctuations. J. Plasma Phys. 60(3), 541-550 (1998) · doi:10.1017/S0022377898006916
[49] Schamel, H.: Analytic BGK modes and their modulational instability. J. Plasma Phys. 13(1), 139-145 (1975) · doi:10.1017/S0022377800025927
[50] Sabatier, J., Agrawal, O.P., Tenreiro Machado, J.A. (eds.): Advances in Fractional Calculus-Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007) · Zbl 1116.00014
[51] Tasnim, I., Masud, M.M., Mamun, A.A.: Effects of nonthermal ions of distinct temperatures on dust acoustic shock waves in a dusty plasma. Astrophys. Space Sci. 343, 647 (2013) · doi:10.1007/s10509-012-1275-3
[52] Whipple, E.C.: Potentials of surfaces in space. Rep. Prog. Phys. 44(11), 1197 (1981) · doi:10.1088/0034-4885/44/11/002
[53] Verheest, F.: Waves and instabilities in dusty space plasmas. Space Sci. Rev. 77(3-4), 267-302 (1996)
[54] Washimi, H., Taniuti, T.: Propagation of ion-acoustic solitary waves of small amplitude. Phys. Rev. Lett. 17, 996 (1966) · doi:10.1103/PhysRevLett.17.996
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.