×

Alternative SIAR models for infectious diseases and applications in the study of non-compliance. (English) Zbl 1519.92242

This paper studies alternative SIAR models for infectious diseases and applications in the study of non-compliance. Two new models are introduced, which take distinct routes to incorporate non-compliant populations affecting disease spread. The first one assumes that individuals have a given probability of being compliant to lockdown measures and the second one treats a given behavior as an epidemic with those partaking in the behavior infecting others and causing them to behave accordingly. The stability and equilibria are studied in the paper showing that knowledge of the models’ basic reproduction numbers provide good local and long-time properties. The herd immunity thresholds for the models are also investigated.

MSC:

92D30 Epidemiology
34D05 Asymptotic properties of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Alcaraz, G. G. and Vargas-De-León, C., Modeling control strategies for influenza A H1N1 epidemics: SIR models, Rev. Mexicana Fís.58 (2012) 37-43.
[2] Ali, M. M., Amialchuk, A. and Dwyer, D. S., The social contagion effect of marijuana use among adolescents, PLoS One6 (2011) e16183.
[3] J. Bahr, Police will respond to complaints about noncompliance with mask mandate (2020), https://theindependent.com/news/local/police-will-respond-to-complaints-about-noncompliance-with-mask-mandate/article_0249e142-351e-11eb-8958-0f23e183 14ff.html, accessed 2021-05-09.
[4] Barbarossa, M. V. and Fuhrmann, J., Compliance with NPIs and possible deleterious effects on mitigation of an epidemic outbreak, Infect. Dis. Model.6 (2021) 859-874.
[5] Bellomo, N., Burini, D. and Outada, N., Multiscale models of COVID-19 with mutations and variants, Netw. Heterogeneous Media17 (2022) 293. · Zbl 1501.92143
[6] Bentout, S., Chekroun, A. and Kuniya, T., Parameter estimation and prediction for coronavirus disease outbreak 2019 (COVID-19) in Algeria, AIMS Public Health7 (2020) 306.
[7] Berge, T., Lubuma, J.-S., Moremedi, G., Morris, N. and Kondera-Shava, R., A simple mathematical model for Ebola in Africa, J. Biol. Dyn.11 (2017) 42-74. · Zbl 1448.92276
[8] Bootsma, M. C. and Ferguson, N. M., The effect of public health measures on the 1918 influenza pandemic in US cities, Proc. Natl. Acad. Sci. USA104 (2007) 7588-7593.
[9] Brooks, S. K., Webster, R. K., Smith, L. E., Woodland, L., Wessely, S., Greenberg, N. and Rubin, G. J., The psychological impact of quarantine and how to reduce it: Rapid review of the evidence, Lancet395 (2020) 912-920.
[10] Chen, X., Huang, H., Ju, J., Sun, R. and Zhang, J., Impact of vaccination on the COVID-19 pandemic in US states, Sci. Rep.12 (2022) 1-10.
[11] Y.-C. Chen, P.-E. Lu, C.-S. Chang and T.-H. Liu, A time-dependent SIR model for COVID-19 with undetectable infected persons, preprint (2020), arXiv:2003.00122.
[12] B. Chhetri, D. Vamsi and C. Sanjeevi, A nested multi-scale model for COVID-19 viral infection, preprint (2021), arXiv:2108.12150.
[13] Chiang, W.-H., Liu, X. and Mohler, G., Hawkes process modeling of COVID-19 with mobility leading indicators and spatial covariates, Int. J. Forecast.38 (2022) 505-520.
[14] Christakis, N. A. and Fowler, J. H., Social contagion theory: Examining dynamic social networks and human behavior, Stat. Med.32 (2013) 556-577.
[15] Cockrell, C. and An, G., Comparative computational modeling of the bat and human immune response to viral infection with the comparative biology immune agent based model, Viruses13 (2021) 1620.
[16] d’Andrea, V., Gallotti, R., Castaldo, N. and De Domenico, M., Individual risk perception and empirical social structures shape the dynamics of infectious disease outbreaks, PLoS Comput. Biol.18 (2022) e1009760.
[17] Danon, L., Ford, A. P., House, T., Jewell, C. P., Keeling, M. J., Roberts, G. O., Ross, J. V. and Vernon, M. C., Networks and the epidemiology of infectious disease, Interdiscip. Perspect. Infect. Dis.2011 (2011) 284909.
[18] Diekmann, O., Heesterbeek, J. A. P. and Metz, J. A., On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations, J. Math. Biol.28 (1990) 365-382. · Zbl 0726.92018
[19] Diekmann, O., Heesterbeek, J. and Roberts, M. G., The construction of next-generation matrices for compartmental epidemic models, J. Roy. Soc. Interface7 (2010) 873-885.
[20] Durón, C. and Farrell, A., A mean-field approximation of SIR epidemics on an Erdös-Rényi network model, Bull. Math. Biol.84 (2022) 1-19. · Zbl 1497.92253
[21] Engels, R. C., Scholte, R. H., van Lieshout, C. F., de Kemp, R. and Overbeek, G., Peer group reputation and smoking and alcohol consumption in early adolescence, Addict. Behav.31 (2006) 440-449.
[22] Frazier, P. I., Cashore, J. M., Duan, N., Henderson, S. G., Janmohamed, A., Liu, B., Shmoys, D. B., Wan, J. and Zhang, Y., Modeling for COVID-19 college reopening decisions: Cornell, a case study, Proc. Natl. Acad. Sci. USA119 (2022) e2112532119.
[23] Gaeta, G., A simple sir model with a large set of asymptomatic infectives, Math. Eng.3 (2021) 1-39. · Zbl 1498.92212
[24] Garetto, M., Leonardi, E. and Torrisi, G. L., A time-modulated Hawkes process to model the spread of COVID-19 and the impact of countermeasures, Annu. Rev. Control51 (2021) 551-563.
[25] Gori, L., Manfredi, P., Marsiglio, S. and Sodini, M., COVID-19 epidemic and mitigation policies: Positive and normative analyses in a neoclassical growth model, J. Public Economic Theory24 (2022) 968-992.
[26] Hadeler, K., Parameter estimation in epidemic models: Simplified formulas, Canad. Appl. Math. Quart.19 (2011) 343-356. · Zbl 1496.92113
[27] Hernandez-Vargas, E. A. and Velasco-Hernandez, J. X., In-host mathematical modelling of COVID-19 in humans, Annu. Rev. Control50 (2020) 448-456.
[28] Kermack, W. O. and McKendrick, A. G., A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. London. Ser. A115 (1927) 700-721, Containing papers of a mathematical and physical character. · JFM 53.0517.01
[29] Kibona, I. E. and Yang, C., SIR model of spread of Zika virus infections: ZIKV linked to microcephaly simulations, Health9 (2017) 1190-1210.
[30] Kresin, C., Schoenberg, F. and Mohler, G., Comparison of Hawkes and SEIR models for the spread of COVID-19, Statistical Science74 (2021) 83-106.
[31] Krivorotko, O., Sosnovskaia, M., Vashchenko, I., Kerr, C. and Lesnic, D., Agent-based modeling of COVID-19 outbreaks for New York state and UK: Parameter identification algorithm, Infect. Dis. Model.7 (2022) 30-44.
[32] Lasser, J., Sorger, J., Richter, L., Thurner, S., Schmid, D. and Klimek, P., Assessing the impact of SARS-CoV-2 prevention measures in Austrian schools using agent-based simulations and cluster tracing data, Nat. Commun.13 (2022) 1-17.
[33] Laukó, I. G., Stability of disease free sets in epidemic models, Math. Comput. Modelling43 (2006) 1357-1366. · Zbl 1155.34332
[34] Macal, C. M. and North, M. J., Agent-based modeling and simulation, in Proc. 2009 Winter Simulation Conf. (WSC) (IEEE, 2009), pp. 86-98.
[35] Mandal, M., Jana, S., Nandi, S. K., Khatua, A., Adak, S. and Kar, T., A model based study on the dynamics of COVID-19: Prediction and control, Chaos Solitons Fractals136 (2020) 109889.
[36] J. Marcus, Quarantine fatigue is real (2020), https://www.theatlantic.com/ideas/archive/2020/05/quarantine-fatigue-real-and-shaming-people-wont-help/611482/, accessed 2021-05-09.
[37] Miller, J. C., A note on the derivation of epidemic final sizes, Bull. Math. Biol.74 (2012) 2125-2141. · Zbl 1254.92084
[38] Morato, M. M., Bastos, S. B., Cajueiro, D. O. and Normey-Rico, J. E., An optimal predictive control strategy for COVID-19 (SARS-CoV-2) social distancing policies in Brazil, Annu. Rev. Control50 (2020) 417-431.
[39] Morris, M., Network Epidemiology: A Handbook for Survey Design and Data Collection (Oxford Univ. Press, 2004).
[40] Osthus, D., Hickmann, K. S., Caragea, P. C., Higdon, D. and Del Valle, S. Y., Forecasting seasonal influenza with a state-space SIR model, Ann. Appl. Stat.11 (2017) 202. · Zbl 1366.62236
[41] Pankavich, S. and Parkinson, C., Mathematical analysis of an in-host model of viral dynamics with spatial heterogeneity, Discrete Contin. Dyn. Syst. Ser. B21 (2016) 1237. · Zbl 1346.35094
[42] Parker, J., A flexible, large-scale, distributed agent based epidemic model, in 2007 Winter Simulation Conf. (IEEE, 2007), pp. 1543-1547.
[43] Peng, K., Lu, Z., Lin, V., Lindstrom, M. R., Parkinson, C., Wang, C., Bertozzi, A. L. and Porter, M. A., A multilayer network model of the coevolution of the spread of a disease and competing opinions, Math. Models Methods Appl. Sci.31 (2021) 2455-2494. · Zbl 1482.91167
[44] Perelson, A. S. and Ke, R., Mechanistic modeling of SARS-CoV-2 and other infectious diseases and the effects of therapeutics, Clin. Pharmacol. Ther.109 (2021) 829-840.
[45] Prakash, D. B., Vamsi, D., Rajesh, D. B. and Sanjeevi, C. B., Control intervention strategies for within-host, between-host and their efficacy in the treatment, spread of COVID-19: A multi scale modeling approach, Comput. Math. Biophys.8 (2020) 198-210. · Zbl 1472.92197
[46] A. Press, 4 bars cited for noncompliance with coronavirus regulations (2020), https://www.usnews.com/news/best-states/rhode-island/articles/2020-10-13/4-bars-cited-for-nomcompliance-with-coronavirus-regulations, accessed 2022-05-09.
[47] Sego, T.et al., A modular framework for multiscale, multicellular, spatiotemporal modeling of acute primary viral infection and immune response in epithelial tissues and its application to drug therapy timing and effectiveness, PLoS Comput. Biol.16 (2020) e1008451.
[48] Sooknanan, J. and Comissiong, D. M., When behaviour turns contagious: The use of deterministic epidemiological models in modeling social contagion phenomena, Int. J. Dynam. Control5 (2017) 1046-1050.
[49] Stanger-Hall, K. F. and Hall, D. W., Abstinence-only education and teen pregnancy rates: Why we need comprehensive sex education in the US, PLoS One6 (2011) e24658.
[50] Tay, B. K., Roby, C. A., Wu, J. W. and Tan, D. Y., Dynamical analysis of universal masking on the pandemic, Int. J. Environ. Res. Public Health18 (2021) 9027.
[51] Vaidya, N. K., Bloomquist, A. and Perelson, A. S., Modeling within-host dynamics of SARS-CoV-2 infection: A case study in ferrets, Viruses13 (2021) 1635.
[52] Valles, T. E., Shoenhard, H., Zinski, J., Trick, S., Porter, M. A. and Lindstrom, M. R., Networks of necessity: Simulating COVID-19 mitigation strategies for disabled people and their caregivers, PLoS Comput. Biol.18 (2022) e1010042.
[53] van den Driessche, P., Reproduction numbers of infectious disease models, Infect. Dis. Model.2 (2017) 288-303.
[54] Wang, X., Wang, Z., Huang, X. and Li, Y., Dynamic analysis of a delayed fractional-order SIR model with saturated incidence and treatment functions, Internat. J. Bifur. Chaos28 (2018) 1850180. · Zbl 1412.34231
[55] M. D. Witte, Why people didn’t social distance (2020), https://news.stanford.edu/2020/04/14/people-didnt-social-distance/, accessed 2022-05-09.
[56] Yin, M.-Z., Zhu, Q.-W. and Lü, X., Parameter estimation of the incubation period of COVID-19 based on the doubly interval-censored data model, Nonlinear Dynam.106 (2021) 1347-1358.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.