×

Nonstandard finite difference method revisited and application to the Ebola virus disease transmission dynamics. (English) Zbl 1453.65185

Summary: We provide effective and practical guidelines on the choice of the complex denominator function of the discrete derivative as well as on the choice of the nonlocal approximation of nonlinear terms in the construction of nonstandard finite difference (NSFD) schemes. Firstly, we construct nonstandard one-stage and two-stage theta methods for a general dynamical system defined by a system of autonomous ordinary differential equations. We provide a sharp condition, which captures the dynamics of the continuous model. We discuss at length how this condition is pivotal in the construction of the complex denominator function. We show that the nonstandard theta methods are elementary stable in the sense that they have exactly the same fixed-points as the continuous model and they preserve their stability, irrespective of the value of the step size. For more complex dynamical systems that are dissipative, we identify a class of nonstandard theta methods that replicate this property. We apply the first part by considering a dynamical system that models the Ebola Virus Disease (EVD). The formulation of the model involves both the fast/direct and slow/indirect transmission routes. Using the specific structure of the EVD model, we show that, apart from the guidelines in the first part, the nonlocal approximation of nonlinear terms is guided by the productive-destructive structure of the model, whereas the choice of the denominator function is based on the conservation laws and the sub-equations that are associated with the model. We construct a NSFD scheme that is dynamically consistent with respect to the properties of the continuous model such as: positivity and boundedness of solutions; local and/or global asymptotic stability of disease-free and endemic equilibrium points; dependence of the severity of the infection on self-protection measures. Throughout the paper, we provide numerical simulations that support the theory.

MSC:

65L12 Finite difference and finite volume methods for ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
37M99 Approximation methods and numerical treatment of dynamical systems
39A30 Stability theory for difference equations
92D30 Epidemiology
Full Text: DOI

References:

[1] Agusto, F. B.; Teboh-Ewungkem, M. I.; Gumel, A. B., Mathematical assessment of the effect of traditional beliefs and customs on the transmission dynamics of the 2014 Ebola outbreaks, BMC Med., 13, 96, 1-18 (2015)
[2] Al-Kahby, H., Dannan, F., and Elaydi, S., Nonstandard discretization methods for some biological models, in Applications of Nonstandard Finite Difference Schemes, R.E. Mickens, ed., World Scientific, Singapore, 2000, pp. 155-180. · Zbl 0989.65143
[3] Anguelov, R.; Lubuma, J. M.-S., Contributions to the mathematics of the nonstandard finite difference method and applications, Numer. Methods Partial Differ. Equ., 17, 518-543 (2001) · Zbl 0988.65055 · doi:10.1002/num.1025
[4] Anguelov, R.; Lubuma, J. M.-S., Nonstandard finite difference method by nonlocal approximation, Math. Comput. Simul., 61, 465-475 (2003) · Zbl 1015.65034 · doi:10.1016/S0378-4754(02)00106-4
[5] Anguelov, R.; Kama, P.; Lubuma, J. M.-S., On non-standard finite difference models of reaction-diffusion equations, J. Comput. Appl. Math., 175, 11-29 (2005) · Zbl 1070.65071 · doi:10.1016/j.cam.2004.06.002
[6] Anguelov, R., Djoko, J.K., Kama, P., and Lubuma, J.M.-S., On elementary stable and dissipative nonstandard finite difference schemes for dynamical systems, Proceedings of the International Conference of Computational Methods in Science and Engineering (Crete, Greece, 27 October-1 November 2006), Lecture Series on Computer and Computational Sciences Vol. 7A, VSP International Science Publishers, Utrecht, 2006, pp. 24-27
[7] Anguelov, R.; Lubuma, J. M.-S.; Shillor, M., Topological dynamic consistency of nonstandard finite difference schemes for dynamical systems, J. Differ. Equ. Appl., 17, 1769-1791 (2011) · Zbl 1230.65089 · doi:10.1080/10236198.2010.488226
[8] Anguelov, R.; Dumont, Y.; Lubuma, J. M.-S.; Shillor, M., Dynamically consistent nonstandard finite difference schemes for epidemiological models, J. Comput. Appl. Math., 255, 161-182 (2014) · Zbl 1291.92097 · doi:10.1016/j.cam.2013.04.042
[9] Appadu, A. R.; Lubuma, J. M.-S; Mphephu, N., Computational study of three numerical methods for some linear and nonlinear advection-diffusion-reaction problems, Prog. Comput. Fluid Dyn., 17, 114-129 (2017) · doi:10.1504/PCFD.2017.082520
[10] Berge, T.; Lubuma, J. M.S.; Moremedi, G. M.; Morris, N.; Kondera-Shava, R., A simple mathematical model for Ebola in Africa, J. Biol. Dyn., 11, 1, 42-74 (2017) · Zbl 1448.92276 · doi:10.1080/17513758.2016.1229817
[11] Berge, T.; Chapwanya, M.; Lubuma, J. M.S.; Terefe, Y. A., A mathematical model for Ebola epidemic with self-protection measures, J. Biol. Syst., 26, 1, 107-132 (2018) · Zbl 1409.92226 · doi:10.1142/S0218339018500067
[12] Berge, T.; H. M.Tenkam, A. J.O. Tassé; Lubuma, J. M.S, Mathematical modeling of contact tracing as a control strategy of Ebola virus disease, Int. J. Biomath., 11, 7 (2018) · Zbl 1400.92315 · doi:10.1142/S1793524518500936
[13] Berge, T.; Bowong, S.; Lubuma, J. M.S.; Manyombe, L. M., Modeling Ebola virus disease transmissions with reservoir in a complex virus life ecology, Math. Biosci. Eng., 15, 1, 21-56 (2018) · Zbl 1378.34071 · doi:10.3934/mbe.2018002
[14] Boum, Y., The DRC is on the road to being Ebola free: How it got there? The Conversation, 5 March 2020. Available athttps://theconversation.com/the-drc-is-on-the-road-to-being-ebola-free-how-it-got-here-132992.
[15] Chowell, G.; Hengartner, N. W.; Castillo-Chavez, C.; Fenimore, P. W.; Hyman, J. M., The basic reproductive number of Ebola and the effects of public health measures: The cases of Congo and Uganda, J. Theor. Biol., 229, 119-126 (2004) · Zbl 1440.92062 · doi:10.1016/j.jtbi.2004.03.006
[16] Dimitrov, D. T.; Kojouharov, H. V., Positive and elementary stable nonstandard numerical methods with applications to predator-prey models, J. Comput. Appl. Math., 189, 98-108 (2006) · Zbl 1087.65068 · doi:10.1016/j.cam.2005.04.003
[17] Dimitrov, D.T., Kojouharov, H.V., and Chen-Charpentier, B.M., Reliable finite difference schemes with applications in mathematical biology, in Advances in the Applications of Nonstandard Finite Difference Schemes, R.E. Mickens, ed., World Scientific, Singapore, 2005, pp. 249-285. · Zbl 1085.65068
[18] Dumont, Y.; Lubuma, J. M.-S., Non-Standard finite-difference methods for vibro-impact problems, Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci., 461, 1927-1950 (2005) · Zbl 1139.70300 · doi:10.1098/rspa.2004.1425
[19] Evans, L. C., Partial Differential Equations (1998), American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 0902.35002
[20] Gumel, A.B. (ed.), Journal of Difference Equations and Application, Vol. 9, 2003, Special Issue no 11-12 dedicated to R.E. Mickens on the occasion of his 60th birthday
[21] Gumel, A.B. (ed.), Mathematics of Discrete and Continuous Dynamical Systems, Vol. 618, 2014, Contemporary Mathematics, American Mathematical Society, (Volume dedicated to R.E. Mickens on the occasion of his 70th birthday) · Zbl 1294.34001
[22] Ivorra, B.; Ngom, D.; Ramos, A. M., A mathematical model to predict the risk of human disease spread between countries-validation and application to 2014-2015 Ebola virus disease epidemic, Bull. Math. Biol., 77, 1668-1704 (2015) · Zbl 1339.92085 · doi:10.1007/s11538-015-0100-x
[23] Kupferschmidt, K., Ebola veteran promises an end to Congo’s epidemic, Africa, Health, Aug. 6, 2019. Available atdoi:10.1126/science.aaz0268.
[24] Lambert, J. D., Numerical Methods for Ordinary Differential Systems (1991), John Wiley & Sons: John Wiley & Sons, New York · Zbl 0745.65049
[25] Lubuma, J.M.-S. and Patidar, K.C., Contributions to the theory of non-standard finite difference methods and applications to singular perturbation problems, in Advances in the Applications of Nonstandard Finite Difference Schemes, R.E. Mickens, ed., World Scientific, Singapore, 2005, pp. 513-560. · Zbl 1085.65070
[26] Lubuma, J. M.-S.; Roux, A., An improved theta method for systems of ordinary differential equations, J. Differ. Equ. Appl., 9, 1023-1035 (2003) · Zbl 1042.65059 · doi:10.1080/1023619031000146904
[27] Maxmen, A., Two Ebola drugs show promise amid ongoing outbreak, Nature News, 12 August 2019. Available atdoi:10.1038/d41586-019-02442-6.
[28] Mickens, R. E., Nonstandard Finite Difference Models of Differential Equations (1994), World Scientific: World Scientific, Singapore · Zbl 0810.65083
[29] Mickens, R. E., Applications of Nonstandard Finite Difference Schemes (2000), World Scientific: World Scientific, Singapore · Zbl 0989.65101
[30] Mickens, R.E., Discrete models of differential equations: The roles of dynamic consistency and positivity, in Difference Equations and Discrete Dynamical Systems, (Proceedings of the 9th International Conference, Los Angeles, USA, 2-7 August 2004), L.J.S. Allen, B. Aulbach, S. Elaydi, and R. Sacker, eds., World Scientific, Singapore, 2005, pp. 51-70 · Zbl 1094.65073
[31] Mickens, R.E. (ed.), Nonstandard finite difference methods, in Advances in the Applications of Nonstandard Finite Difference Schemes, World Scientific, Singapore, 2005 · Zbl 1085.65071
[32] Mickens, R. E., Calculation of denominator functions for nonstandard finite difference schemes for differential equations satisfying a positivity condition, Numer Methods Partial Differ. Equ., 23, 672-691 (2007) · Zbl 1114.65094 · doi:10.1002/num.20198
[33] Ndanguza, D.; Tchuenche, J. M.; Haario, H., Statistical data analysis of the 1995 Ebola outbreak in the Democratic Republic of Congo, Afrika Mat., 24, 55-68 (2013) · Zbl 1271.62264 · doi:10.1007/s13370-011-0039-5
[34] Patidar, K. C., Nonstandard finite difference methods: Recent trends and further developments, J. Differ. Equ. Appl., 22, 817-849 (2016) · Zbl 1347.65138 · doi:10.1080/10236198.2016.1144748
[35] Roeger, L.-I.W., Exact finite difference schemes, in Mathematics of Discrete and Continuous Dynamical Systems, Contemporary Mathematics, A.B. Gumel, ed., Vol. 618, American Mathematical Society, Providence, 2014, pp. 147-161. · Zbl 1330.65119
[36] Stuart, A. M.; Humphries, A. R., Dynamical Systems and Numerical Analysis (1998), Cambridge University Press: Cambridge University Press, New York · Zbl 0913.65068
[37] World Health Organization (WHO), Ebola virus disease, Democratic Republic of Congo, External Situation Report 78/2019, (4 February 2020).
[38] World Health Organization (WHO), Ebola Virus Disease, Democratic Republic of Congo, External Situation Reports 82/2019, (4 February 2020) and 81/2019, (25 February 2020).
[39] van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartment models of disease transmission, Math. Biosci., 180, 29-48 (2002) · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.