×

The large graph limit of a stochastic epidemic model on a dynamic multilayer network. (English) Zbl 1447.92433

Summary: We consider a Markovian SIR-type (susceptible \(\rightarrow\) infected \(\rightarrow\) recovered) stochastic epidemic process with multiple modes of transmission on a contact network. The network is given by a random graph following a multilayer configuration model where edges in different layers correspond to potentially infectious contacts of different types. We assume that the graph structure evolves in response to the epidemic via activation or deactivation of edges of infectious nodes. We derive a large graph limit theorem that gives a system of ordinary differential equations (ODEs) describing the evolution of quantities of interest, such as the proportions of infected and susceptible vertices, as the number of nodes tends to infinity. Analysis of the limiting system elucidates how the coupling of edge activation and deactivation to infection status affects disease dynamics, as illustrated by a two-layer network example with edge types corresponding to community and healthcare contacts. Our theorem extends some earlier results describing the deterministic limit of stochastic SIR processes on static, single-layer configuration model graphs. We also describe precisely the conditions for equivalence between our limiting ODEs and the systems obtained via pair approximation, which are widely used in the epidemiological and ecological literature to approximate disease dynamics on networks. The flexible modeling framework and asymptotic results have potential application to many disease settings including Ebola dynamics in West Africa, which was the original motivation for this study.

MSC:

92D30 Epidemiology
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)

References:

[1] M. Altmann, Susceptible-infected-removed epidemic models with dynamic partnerships, J. Math. Biol. 33(6) (1995), pp. 661-675. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 0824.92024
[2] M. Altmann, The deterministic limit of infectious disease models with dynamic partners, Math. Biosci. 150(2) (1998), pp. 153-175. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 0946.92026
[3] H. Andersson, Limit theorems for a random graph epidemic model, Ann. Appl. Probab. 8(1998), pp. 1331-1349. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 0928.92023
[4] H. Andersson and T. Britton, Stochastic Epidemic Models and their Statistical Analysis, Vol. 4, Springer, New York, 2000. [Crossref], [Google Scholar] · Zbl 0951.92021
[5] J. Arino, F. Brauer, P. Van Den Driessche, J. Watmough, and J. Wu, A final size relation for epidemic models, Math. Biosci. Eng. 4(2) (2007), p. 159-175. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1123.92030
[6] D. Balcan, V. Colizza, B. Gonçalves, H. Hu, J.J. Ramasco, and A. Vespignani, Multiscale mobility networks and the spatial spreading of infectious diseases, Proc. Natl. Acad. Sci. 106(51) (2009), pp. 21484-21489. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[7] F. Ball and P. Neal, Network epidemic models with two levels of mixing, Math. Biosci. 212(1) (2008), pp. 69-87. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1132.92020
[8] S. Bansal, B.T. Grenfell, and L.A. Meyers, When individual behaviour matters: Homogeneous and network models in epidemiology, J. R. Soc. Interface 4(16) (2007), pp. 879-891. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[9] S. Bansal, J. Read, B. Pourbohloul, and L.A. Meyers, The dynamic nature of contact networks in infectious disease epidemiology, J. Biol. Dyn. 4(5) (2010), pp. 478-489. [Taylor & Francis Online], [Google Scholar] · Zbl 1342.92225
[10] A.D. Barbour and G. Reinert, Approximating the epidemic curve, Electron. J. Probab. 18(54) (2013), pp. 1-30. [Google Scholar] · Zbl 1301.92072
[11] M. Barthélemy, A. Barrat, R. Pastor-Satorras, and A. Vespignani, Velocity and hierarchical spread of epidemic outbreaks in scale-free networks, Phys. Rev. Lett. 92(17) (2004), p. 178701. doi:doi: 10.1103/PhysRevLett.92.178701. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[12] M. Barthélemy, A. Barrat, R. Pastor-Satorras, and A. Vespignani, Dynamical patterns of epidemic outbreaks in complex heterogeneous networks, J. Theoret. Biol. 235 (2005), pp. 275-288. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1445.92262
[13] F. Battiston, V. Nicosia, and V. Latora, Structural measures for multiplex networks, Phys. Rev. E 89(3) (2014), p. 032804. doi:doi: 10.1103/PhysRevE.89.032804. [Crossref], [Web of Science ®], [Google Scholar]
[14] L. Bengtsson, J. Gaudart, X. Lu, S. Moore, E. Wetter, K. Sallah, S. Rebaudet, and R. Piarroux, Using mobile phone data to predict the spatial spread of cholera, Sci. Rep. 5 (2015), p. 923. 10.1038/srep08. [Crossref], [Web of Science ®], [Google Scholar]
[15] T. Bohman and M. Picollelli, Sir epidemics on random graphs with a fixed degree sequence, Random Structures Algorithms 41(2) (2012), pp. 179-214. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 1401.92176
[16] D. Brockmann, Human mobility and spatial disease dynamics, in Reviews of nonlinear dynamics and complexity, vol 2, H.G. Schuster, eds., Wiley-VCH Verlag, GmbH Co, KGaA, Weinheim, Germany, 2010. [Google Scholar] · Zbl 1218.92063
[17] D. Brockmann and D. Helbing, The hidden geometry of complex, network-driven contagion phenomena, Science 342(6164) (2013), pp. 1337-1342. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[18] C. Buono, L.G. Alvarez-Zuzek, P.A. Macri, and L.A. Braunstein, Epidemics in partially overlapped multiplex networks, PLoS ONE 9(3) (2014), p. 5. [Crossref], [Web of Science ®], [Google Scholar]
[19] A. Cardillo, M. Zanin, J. Gómez-Gardeñes, M. Romance, A.J.G. del Amo, and S. Boccaletti, Modeling the multi-layer nature of the European air transport network: Resilience and passengers re-scheduling under random failures, Eur. Phys. J. Spec. Top. 215(1) (2013), pp. 23-33. [Crossref], [Web of Science ®], [Google Scholar]
[20] G. Chowell and H. Nishiura, Transmission dynamics and control of ebola virus disease (evd): A review, BMC Med. 12(1) (2014), p. 196. [Crossref], [PubMed], [Google Scholar]
[21] V. Colizza, A. Barrat, M. Barth’elemy, and A. Vespignani, The role of the airline transportation network in the prediction and predictability of global epidemics, Proc. Natl. Acad. Sci. USA 103 (2006), pp. 2015-2020. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[22] C.E.M. Coltart, A.M. Johnson, and C.J.M. Whitty, Role of healthcare workers in early epidemic spread of Ebola: Policy implications of prophylactic compared to reactive vaccination policy in outbreak prevention and control, BMC Med. 13 (2015), p. 271. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[23] M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M.A. Porter, S. Gómez, and A. Arenas, Mathematical formulation of multilayer networks, Phys. Rev. X 3(4) (2013), p. 041022. [Web of Science ®], [Google Scholar]
[24] L. Decreusefond, J.S. Dhersin, P. Moyal, and V.C. Tran, Large graph limit for an SIR process in random network with heterogeneous connectivity, Ann. Appl. Probab. 22(2) (2012), pp. 541-575. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 1263.92040
[25] P.S. Dodds and D.J. Watts, Universal behavior in a generalized model of contagion, Phys. Rev. Lett. 92(21) (2004), pp. 218701(1)-218201(4). [Crossref], [Web of Science ®], [Google Scholar]
[26] S.F. Dowell, R. Mukunu, T.G. Ksiazek, A.S. Khan, P.E. Rollin, and C. Peters, Transmission of ebola hemorrhagic fever: A study of risk factors in family members, kikwit, democratic republic of the congo, 1995, J. Infectious Diseases 179(Supplement 1) (1999), pp. S87-S91. [Crossref], [PubMed], [Google Scholar]
[27] J.M. Drake, R. Kaul, L.W. Alexander, S.M. O’Regan, A.M. Kramer, J.T. Pulliam, M.J. Ferrari, and A.W. Park, Ebola cases and health system demand in Liberia, PLoS Biol. 13(1) (2015), p. e1002056. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[28] K.T. Eames and M.J. Keeling, Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases, Proc. Natl. Acad. Sci. 99(20) (2002), pp. 13330-13335. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[29] K.T. Eames and M.J. Keeling, Monogamous networks and the spread of sexually transmitted diseases, Math. Biosci. 189(2) (2004), pp. 115-130. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1048.92028
[30] D. Easley and J. Kleinberg, Networks, crowds, and markets: reasoning about a highly connected world, Cambridge University Press, Cambridge, 2010. [Crossref], [Google Scholar] · Zbl 1205.91007
[31] J.M. Epstein, J. Parker, D. Cummings, and R.A. Hammond, Coupled contagion dynamics of fear and disease: Mathematical and computational explorations, PLoS One 3(12) (2008), p. e3955. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[32] D. Fisman, E. Khoo, and A. Tuite, Early epidemic dynamics of the West African 2014 Ebola outbreak: Estimates derived with a simple two-parameter model, PLoS Currents 6 (2014), p. 1. doi:doi: 10.1371/currents.outbreaks.89c0d3783f36958d96ebbae97348d571. [Crossref], [Google Scholar]
[33] S. Funk and V.A. Jansen, Interacting epidemics on overlay networks, Phys. Rev. E81(3) (2010), p. 036118. [Crossref], [Web of Science ®], [Google Scholar]
[34] S. Funk, E. Gilad, C. Watkins, and V.A. Jansen, The spread of awareness and its impact on epidemic outbreaks, Pro. Natl. Acad. Sci. 106(16) (2009), pp. 6872-6877. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1203.91242
[35] S. Funk, E. Gilad, and V. Jansen, Endemic disease, awareness, and local behavioural response, J. Theoret. Biol. 264(2) (2010), pp. 501-509. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1406.92567
[36] M. Goeijenbier, J.J.A. van Kampen, C.B.E.M. Reusken, M.P.G. Koopmans, and E.C.M. van Gorp, Ebola virus disease: A review on epidemiology, symptoms, treatment and pathogenesis, J. Med. 72(9) (2014), pp. 442-448. [Google Scholar]
[37] M.F. Gomes, A.P. Piontti, L. Rossi, D. Chao, I. Longini, M.E. Halloran, and A. Vespignani, Assessing the international spreading risk associated with the 2014 West African Ebola outbreak, PLoS Currents 6 (2014), p. 1. doi:10.1371/currents.outbreaks.cd818f63d40e24aef769dda7df9e0da5. [Google Scholar] · doi:10.1371/currents.outbreaks.cd818f63d40e24aef769dda7df9e0da5
[38] C. Granell, S. Gómez, and A. Arenas, Dynamical interplay between awareness and epidemic spreading in multiplex networks, Phys. Rev. Lett. 111(12) (2013), p. 128701. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[39] P. Grassberger, On the critical behavior of the general epidemic process and dynamical percolation, Math. Biosci. 63(2) (1983), pp. 157-172. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 0531.92027
[40] T. Gross, C.J.D. D’Lima, and B. Blasius, Epidemic dynamics on an adaptive network, Phys. Rev. Lett. 96(20) (2006), p. 208701. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[41] B.S. Hewlett and R.P. Amola, Cultural contexts of Ebola in northern Uganda, Emerg. Infect. Dis. 9 (2003), pp. 1242-1248. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[42] T. House and M.J. Keeling, Insights from unifying modern approximations to infections on networks, J. R. Soc. Interface 8(54) (2011), pp. 67-73. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[43] S. Janson, M. Luczak, and P. Windridge, Law of large numbers for the SIR epidemic on a random graph with given degrees, Random Structures Algorithms 45(4) (2014), pp. 724-761. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 1328.05170
[44] H.H. Jo, S.K. Baek, and H.T. Moon, Immunization dynamics on a two-layer network model, Phys. A 361(2) (2006), pp. 534-542. [Crossref], [Web of Science ®], [Google Scholar]
[45] M. Keeling, Correlation equations for endemic diseases: Externally imposed and internally generated heterogeneity, Proc. R. Soc. Lond. B 266(1422) (1999), pp. 953-960. [Crossref], [Web of Science ®], [Google Scholar]
[46] M.J. Keeling, The effects of local spatial structure on epidemiological invasions, Proc. R. Soc. Lond. B 266(1421) (1999), pp. 859-867. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[47] W.O. Kermack and A.G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. Ser. A 115 (1927), pp. 700-721. [Crossref], [Google Scholar] · JFM 53.0517.01
[48] M. Kivelä, A. Arenas, M. Barthelemy, J.P. Gleeson, Y. Moreno, and M.A. Porter, Multilayer networks, J. Complex Networks 2 (2014), pp. 203-271. [Crossref], [Google Scholar]
[49] T. Kratz, P. Roddy, A.T. Oloma, B. Jeffs, D.P. Ciruelo, O. de la Rosa, and M. Borchert, Ebola Virus Disease outbreak in Isiro, Democratic Republic of the Congo, 2012: Signs and symptoms, management and outcomes, PLoS ONE 10(6) (2015), p. e0129333. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[50] T.G. Kurtz, Solutions of ordinary differential equations as limits of pure jump markov processes, J. Appl. Probab. 7(1) (1970), pp. 49-58. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 0191.47301
[51] J. Legrand, R. Grais, P. Boelle, A. Valleron, and A. Flahault, Understanding the dynamics of ebola epidemics, Epidemiol. Infection 135(04) (2007), pp. 610-621. [Crossref], [PubMed], [Google Scholar]
[52] P.E. Lekone and B.F. Finkenstädt, Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study, Biometrics 62(4) (2006), pp. 1170-1177. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1114.62120
[53] S. Lenhart and J.T. Workman, Optimal control applied to biological models, CRC Press, Boca Raton, FL, 2007. [Crossref], [Google Scholar] · Zbl 1291.92010
[54] K.Y. Leung, M. Kretzschmar, and O. Diekmann, Dynamic concurrent partnership networks incorporating demography, Theoret. Popul. Biol. 82 (2012), pp. 229-239. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1338.91116
[55] K.Y. Leung, M. Kretzschmar, and O. Diekmann, SI infection on a dynamic partnership network: Characterization ofR_0, J. Math. Biol. 71 (2015), pp. 1-56. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1321.34066
[56] M. Li, J. Ma, and P. van den Driessche, Model for disease dynamics of a waterborne pathogen on a random network, J. Math. Biol. 71(4) (2015), pp. 961-977. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1350.92052
[57] J. Lindquist, J. Ma, P. van den Driessche, and F.H. Willeboordse, Effective degree network disease models, J. Math. Biol. 62(2) (2011), pp. 143-164. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1232.92066
[58] J. Ma and D.J. Earn, Generality of the final size formula for an epidemic of a newly invading infectious disease, Bull. Math. Biol. 68(3) (2006), pp. 679-702. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1334.92419
[59] J. Ma, P. van den Driessche, and F.H. Willeboordse, Effective degree household network disease model, J. Math. Biol. 66 (2013), pp. 75-94. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1256.92033
[60] G.D. Maganga, J. Kapetshi, N. Berthet, B. Kebela Ilunga, F. Kabange, P. Mbala Kingebeni, V.Mondonge, J.J.T. Muyembe, E. Bertherat, S. Briand, J. Cabore, A. Epelboin, P. Formenty, G. Kobinger, L. González-Angulo, I. Labouba, J.-C. Manuguerra, J.-M. Okwo-Bele, C. Dye, and E.M. Leroy, Ebola virus disease in the Democratic Republic of Congo, New Engl. J. Med. 371(22) (2014), pp. 2083-2091. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[61] A. Matanock, M.A. Arwady, P. Ayscue, J.D. Forrester, B. Gaddis, J.C. Hunter, B. Monroe, S.K. Pillai, C. Reed, I.J. Schafer, M. Massaquoi, B. Dahn, and K.M. De Cock, Ebola Virus Disease cases among health care workers not working in Ebola treatment units - Liberia, June-August, 2014, Morbidity Mortality Weekly Rep. 63(46) (2014), pp. 1077-1081. [PubMed], [Web of Science ®], [Google Scholar]
[62] R.M. May and A.L. Lloyd, Infection dynamics on scale-free networks, Phys. Rev. E 64(6) (2001), p. 066112. [Crossref], [Web of Science ®], [Google Scholar]
[63] S. Merler, M. Ajelli, L. Fumanelli, M.F. Gomes, A.P. y Piontti, L. Rossi, D.L. Chao, I.M. Longini, M.E.Halloran, and A. Vespignani, Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: A computational modelling analysis, Lancet Infect. Dis. 15(2) (2015), pp. 204-211. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[64] P. Meyer, A decomposition theorem for supermartingales, Illinois J. Math. 6(2) (1962), pp. 193-205. [Crossref], [Google Scholar] · Zbl 0133.40304
[65] L.A. Meyers, B. Pourbohloul, M.E. Newman, D.M. Skowronski, and R.C. Brunham, Network theory and SARS: predicting outbreak diversity, J. Theoret. Biol. 232 (2005), pp. 71-81. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1442.92174
[66] J.C. Miller, A note on a paper by Erik Volz: SIR dynamics in random networks, J. Math. Biol. 62(3) (2011), pp. 349-358. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1232.92067
[67] J.C. Miller, Epidemics on networks with large initial conditions or changing structure, PLoS ONE9(7) (2014), p. e101421. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[68] J.C. Miller and I.Z. Kiss, Epidemic spread in networks: Existing methods and current challenges, Math. Model. Nat. Phenom. 9(2) (2014), p. 4. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1322.92076
[69] J.C. Miller and E.M. Volz, Incorporating disease and population structure into models of SIR disease in contact networks, PLoS ONE 8(8) (2013), p. e69162. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[70] J.C. Miller, A.C. Slim, and E.M. Volz, Edge-based compartmental modelling for infectious disease spread, J. R. Soc. Interface (2011), p. rsif20110403. [Web of Science ®], [Google Scholar]
[71] M.E. Newman, Spread of epidemic disease on networks, Phys. Rev. E 66 (2002), p. 016128. doi:doi: 10.1103/PhysRevE.66.016128. [Crossref], [Web of Science ®], [Google Scholar]
[72] M. Newman, Networks: An Introduction, Oxford University Press, Oxford, 2010. [Crossref], [Google Scholar] · Zbl 1195.94003
[73] A. Pandey, K.E. Atkins, J. Medlock, N. Wenzel, J.P. Townsend, J.E. Childs, T.G. Nyenswah, M.L.Ndeffo-Mbah, and A.P. Galvani, Strategies for containing Ebola in West Africa, Science 346(6212) (2014), pp. 991-995. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[74] R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev. Lett. 86(14) (2001), pp. 3200-3203. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[75] L. Pellis, F. Ball, S. Bansal, K. Eames, T. House, V. Isham, and P. Trapman, Eight challenges for network epidemic models, Epidemics 10 (2015), pp. 58-62. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[76] L. Pellis, T. House, and M.J. Keeling, Exact and approximate moment closures for non-Markovian network epidemics, J. Theoret. Biol. 382 (2015), pp. 160-177. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1343.92513
[77] M.A. Porter, J.P. Onnela, and P.J. Mucha, Communities in networks, Notices Amer. Math. Soc. 56(9) (2009), pp. 1082-1097. 1164-1166. [Google Scholar] · Zbl 1188.05142
[78] D. Rand, Correlation equations and pair approximations for spatial ecologies, Adv. Ecol. Theory 1 (2007), pp. 100-142. doi:doi: 10.1002/9781444311501.ch4. [Crossref], [Google Scholar]
[79] C.M. Rivers, E.T. Lofgren, M. Marathe, S. Eubank, and B.L. Lewis, Modeling the impact of interventions on an epidemic of Ebola in Sierra Leone and Liberia, PLoS Currents 6 (2014), p. 1. doi:doi: 10.1371/currents.outbreaks.4d41fe5d6c05e9df30ddce33c66d084c. [Crossref], [Google Scholar]
[80] T.H. Roels, A.S. Bloom, J. Buffington, G.L. Muhungu, W.R. MacKenzie, A.S. Khan, R. Ndambi, D.L. Noah, H.R. Rolka, C.J. Peters, and T.G. Ksiazek, Ebola hemorrhagive fever, Kikwit, Democratic Republic of the Congo, 1995: Risk factors for patients without a reported exposure, J. Infect. Dis. 179(Suppl 1) (1999), pp. S92-S97. [Crossref], [PubMed], [Google Scholar]
[81] M.P. Rombach, M.A. Porter, J.H. Fowler, and P.J. Mucha, Core-periphery structure in networks, SIAM J. Appl. Math. 74(1) (2014), pp. 167-190. [Crossref], [Web of Science ®], [Google Scholar] · Zbl 1368.62169
[82] F.D. Sahneh and C. Scoglio, May the best meme win!: New exploration of competitive epidemic spreading over arbitrary multi-layer networks, preprint (2013). Available at arXiv:1308.4880. [Google Scholar]
[83] S.V. Scarpino, A. Iamarino, C. Wells, D. Yamin, M. Ndeffo-Mbah, N.S. Wenzel, S.J. Fox, T. Nyenswah, F.L. Altice, and A.P. Galvani, et al., Epidemiological and viral genomic sequence analysis of the 2014 Ebola outbreak reveals clustered transmission, Clin. Infect. Dis. 60(7) (2015), pp. 1079-1082. doi:doi: 10.1093/cid/ciu1131. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[84] S. Shai and S. Dobson, Effect of resource constraints on intersimilar coupled networks, Phys. Rev. E 86(6) (2012), p. 066120. doi:doi: 10.1103/PhysRevE.86.066120. [Crossref], [Web of Science ®], [Google Scholar]
[85] S. Shai and S. Dobson, Coupled adaptive complex networks, Phys. Rev. E 87(4) (2013), p. 042812. doi:doi: 10.1103/PhysRevE.87.042812. [Crossref], [Web of Science ®], [Google Scholar]
[86] K.J. Sharkey, Deterministic epidemiological models at the individual level, J. Math. Biol. 57(3) (2008), pp. 311-331. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1141.92039
[87] K.J. Sharkey, I.Z. Kiss, R.R. Wilkinson, and P.L. Simon, Exact equations for SIR epidemics on tree graphs, Bull. Math. Biol. 77(4) (2015), pp. 614-645. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1334.92428
[88] L.B. Shaw and I.B. Schwartz, Fluctuating epidemics on adaptive networks, Phys. Rev. E 77(6) (2008), p. 066101. doi:doi: 10.1103/PhysRevE.77.066101. [Crossref], [Web of Science ®], [Google Scholar]
[89] A.J. Tatem, Y.L. Qiu, D.L. Smith, O. Sabot, A.S. Ali, and B. Moonen, The use of mobile phone data for the estimation of the travel patterns and imported Plasmodium falciparum rates among Zanzibar residents, Malar. J. 8 (2009), p.287. [Crossref], [PubMed], [Google Scholar]
[90] B. Tsanou, G.M. Moremedi, R. Kaondera-Shava, J.M. Lubuma, and N. Morris, A simple mathematical model for Ebola in Africa, J. Biol. Dyn. 1(11) (2017), pp. 42-74. doi:doi: 10.1080/17513758.2016.1229817. [Taylor & Francis Online], [Google Scholar] · Zbl 1448.92276
[91] J. Ugander, L. Backstrom, C. Marlow, and J. Kleinberg, Structural diversity in social contagion, Proc. Natl. Acad. Sci. USA 109(16) (2012), pp. 5962-5966. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[92] E. Valdano, L. Ferreri, C. Poletto, and V. Colizza, Analytical computation of the epidemic threshold on temporal networks, Phys. Rev. X 5(2) (2015), p. 021005. [Web of Science ®], [Google Scholar]
[93] E. Valdano, C. Poletto, and V. Colizza, Infection propagator approach to compute epidemic thresholds on temporal networks: impact of immunity and of limited temporal resolution, Eur. Phys. J. B 88(12) (2015), pp. 1-11. [Crossref], [Web of Science ®], [Google Scholar]
[94] L. Valdez, H.H.A. Rêgo, H. Stanley, and L. Braunstein, Predicting the extinction of Ebola spreading in Liberia due to mitigation strategies, preprint (2015). Available at arXiv:1502.01326. [Google Scholar]
[95] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), pp. 29-48. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1015.92036
[96] R. Van Der Hofstad, Random graphs and complex networks (2009), p. 11. Available on http://www.win.tue.nl/rhofstad/NotesRGCN.pdf. [Google Scholar]
[97] E. Volz, SIR dynamics in random networks with heterogeneous connectivity, J. Math. Biol. 56(3) (2008), pp. 293-310. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1143.92036
[98] E. Volz and L.A. Meyers, Susceptible-infected-recovered epidemics in dynamic contact networks, Proc. R. Soc. Lond. B 274(1628) (2007), pp. 2925-2934. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[99] Y. Wang and G. Xiao, Effects of interconnections on epidemics in network of networks, in 2011 7th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM), Wuhan, IEEE, 2011, pp. 1-4. [Google Scholar]
[100] D.J. Watts and S.H. Strogatz, Collective dynamics of ‘small-world’ networks, Nature 393(6684) (1998), pp. 440-442. [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1368.05139
[101] G. Webb, C. Browne, X. Huo, O. Seydi, M. Seydi, and P. Magal, A model of the 2014 Ebola epidemic in West Africa with contact tracing, PLoS Currents 7 (2014), p. 1. doi:doi: 10.1371/currents.outbreaks.846b2a31ef37018b7d1126a9c8adf22a. [Crossref], [Google Scholar]
[102] X. Wei, N. Valler, B.A. Prakash, I. Neamtiu, M. Faloutsos, and C. Faloutsos, Competing memes propagation on networks: A case study of composite networks, ACM SIGCOMM Comput. Commun. Rev. 42(5) (2012), pp. 5-12. [Crossref], [Web of Science ®], [Google Scholar]
[103] J.S. Weitz and J. Dushoff, Modeling post-death transmission of Ebola: Challenges for inference and opportunities for control, Sci. Rep. 5 (2015), p. 8751. doi:doi: 10.1038/srep08751. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[104] C. Wells, D. Yamin, M.L. Ndeffo-Mbah, N. Wenzel, S.G. Gaffney, J.P. Townsend, L.A. Meyers, M.Fallah, T.G. Nyenswah, F.L. Altice, K.E. Atkins, and A.P. Galvani, Harnessing case isolation and ring vaccination to control Ebola, PLoS Negl. Trop. Dis. 9(6) (2015), p. e0003794. doi:doi: 10.1371/journal.pntd.0003794. [Crossref], [PubMed], [Google Scholar]
[105] A. Wesolowski, N. Eagle, A.J. Tatem, D.L. Smith, A.M. Noor, R.W. Snow, and C.O. Buckee, Quantifying the impact of human mobility on malaria, Science 338(6104) (2012), pp. 267-270. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[106] D.J. Wilkinson, Stochastic modelling for quantitative description of heterogeneous biological systems, Nat. Rev. Genet. 10(2) (2009), pp. 122-133. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[107] O. Yağan and V. Gligor, Analysis of complex contagions in random multiplex networks, Phys. Rev. E 86(3) (2012), p. 036103. doi:doi: 10.1103/PhysRevE.86.036103. [Crossref], [Web of Science ®], [Google Scholar]
[108] O. Yagan, D. Qian, J. Zhang, and D. Cochran, Conjoining speeds up information diffusion in overlaying social-physical networks, IEEE J. Selected Areas Commun. 31(6) (2013), pp. 1038-1048. [Crossref], [Web of Science ®], [Google Scholar]
[109] D.H. Zanette and S. Risau-Gusmán, Infection spreading in a population with evolving contacts, J. Biol. Phys. 34(1-2) (2008), pp. 135-148. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[110] D. Zhao, L. Li, S. Li, Y. Huo, and Y. Yang, Identifying influential spreaders in interconnected networks, Phys. Scripta 89(1) (2014), p. 015203. doi:doi: 10.1088/0031-8949/89/01/015203. [Crossref], [Web of Science ®], [Google Scholar]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.