×

Causality and Bayesian network PDEs for multiscale representations of porous media. (English) Zbl 1453.62422

Summary: Microscopic (pore-scale) properties of porous media affect and often determine their macroscopic (continuum- or Darcy-scale) counterparts. Understanding the relationship between processes on these two scales is essential to both the derivation of macroscopic models of, e.g., transport phenomena in natural porous media, and the design of novel materials, e.g., for energy storage. Microscopic properties exhibit complex statistical correlations and geometric constraints that present challenges for the estimation of macroscopic quantities of interest (QoIs), e.g., in the context of global sensitivity analysis (GSA) of macroscopic QoIs with respect to microscopic material properties. We present a systematic way of building correlations into stochastic multiscale models through Bayesian Networks. The proposed framework allows us to construct the joint probability density function (PDF) of model parameters through causal relationships that are informed by domain knowledge and emulate engineering processes, e.g., the design of hierarchical nanoporous materials. These PDFs also serve as input for the forward propagation of parametric uncertainty thereby yielding a Bayesian Network PDE. To assess the impact of causal relationships and microscale correlations on macroscopic material properties, we propose a moment-independent GSA and corresponding effect rankings for Bayesian Network PDEs, based on the differential Mutual Information, that leverage the structure of Bayesian Networks and account for both correlated inputs and complex non-Gaussian (skewed, multimodal) QoIs. Our findings from numerical experiments, which feature a non-intrusive uncertainty quantification workflow, indicate two practical outcomes. First, the inclusion of correlations through structured priors based on causal relationships informed by domain knowledge impacts predictions of QoIs and has important implications for engineering design. Second, structured priors with non-trivial correlations yield different effect rankings than independent priors; these rankings are more consistent with the anticipated physics.

MSC:

62F15 Bayesian inference
76S05 Flows in porous media; filtration; seepage
35R60 PDEs with randomness, stochastic partial differential equations

Software:

PRMLT; DAKOTA

References:

[1] Zhang, X.; Urita, K.; Moriguchi, I.; Tartakovsky, D. M., Design of nanoporous materials with optimal sorption capacity, J. Appl. Phys., 117, Article 244304 pp. (2015)
[2] Zhang, X.; Tartakovsky, D. M., Optimal design of nanoporous materials for electrochemical devices, Appl. Phys. Lett., 110, Article 143103 pp. (2017)
[3] Ling, B.; Tartakovsky, A. M.; Battiato, I., Dispersion controlled by permeable surfaces: surface properties and scaling, J. Fluid Mech., 801, 13-42 (2016) · Zbl 1445.76078
[4] Um, K.; Zhang, X.; Katsoulakis, M.; Plechac, P.; Tartakovsky, D. M., Global sensitivity analysis of multiscale properties of porous materials, J. Appl. Phys., 123, Article 075103 pp. (2018)
[5] Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (1988), Morgan Kaufmann Publishers: Morgan Kaufmann Publishers Los Altos
[6] Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (2014), Elsevier
[7] Koller, D.; Friedman, N., Probabilistic Graphical Models: Principles and Techniques, Adaptive Computation and Machine Learning (2009), MIT Press: MIT Press Cambridge, MA · Zbl 1183.68483
[8] Mara, T. A.; Tarantola, S.; Annoni, P., Non-parametric methods for global sensitivity analysis of model output with dependent inputs, Environ. Model. Softw., 72, 173-183 (2015)
[9] Iooss, B.; Prieur, C., Shapley effects for sensitivity analysis with dependent inputs: comparisons with Sobol’ indices, numerical estimation and applications (2018)
[10] Navarro, M.; Witteveen, J.; Blom, J., Polynomial chaos expansion for general multivariate distributions with correlated variables (2014)
[11] Cover, T. M.; Thomas, J. A., Elements of Information Theory (2006), Wiley-Interscience: Wiley-Interscience Hoboken, NJ · Zbl 1140.94001
[12] Soofi, E. S., Capturing the intangible concept of information, J. Am. Stat. Assoc., 89, 1243-1254 (1994) · Zbl 0810.62012
[13] Adams, B. M.; Bohnhoff, W. J.; Dalbey, K. R.; Eddy, J. P.; Eldred, M. S.; Gay, D. M.; Haskell, K.; Hough, P. D.; Swiler, L. P., DAKOTA, a Multilevel Parallel Object-oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 5.0 User’s Manual (2009), Sandia National Laboratories: Sandia National Laboratories Albuquerque, NM, Tech. Rep. SAND2010-2183
[14] Foreman-Mackey, D.; Hogg, D. W., DAFT: beautifully rendered probabilistic graphical models (2012)
[15] Xiu, D., Numerical Methods for Stochastic Computations: A Spectral Method Approach (2010), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 1210.65002
[16] Paulson, J. A.; Buehler, E. A.; Mesbah, A., Arbitrary polynomial chaos for uncertainty propagation of correlated random variables in dynamic systems, IFAC-PapersOnLine, 50, 3548-3553 (2017)
[17] Rosenblatt, M., Remarks on a multivariate transformation, Ann. Math. Stat., 23, 470-472 (1952) · Zbl 0047.13104
[18] Torre, E.; Marelli, S.; Embrechts, P.; Sudret, B., A general framework for uncertainty quantification under non-Gaussian input dependencies (2017)
[19] Baringhaus, L.; Franz, C., On a new multivariate two-sample test, J. Multivar. Anal., 88, 190-206 (2004) · Zbl 1035.62052
[20] Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S., Global Sensitivity Analysis: The Primer (2008), John Wiley & Sons Ltd. · Zbl 1161.00304
[21] Sobol, I. M., Sensitivity estimates for nonlinear mathematical models, Math. Model. Comput. Exp., 1, 407-414 (1993) · Zbl 1039.65505
[22] Homma, T.; Saltelli, A., Importance measures in global sensitivity analysis of nonlinear models, Reliab. Eng. Syst. Saf., 52, 1-17 (1996)
[23] Rahman, S., The \(f\)-sensitivity index, SIAM/ASA J. Uncertain. Quantificat., 4, 130-162 (2016) · Zbl 1348.62015
[24] Pantazis, Y.; Katsoulakis, M. A.; Vlachos, D. G., Parametric sensitivity analysis for biochemical reaction networks based on pathwise information theory, BMC Bioinform., 14, 1 (2013)
[25] Pantazis, Y.; Katsoulakis, M. A., A relative entropy rate method for path space sensitivity analysis of stationary complex stochastic dynamics, J. Chem. Phys., 138, Article 054115 pp. (2013)
[26] Komorowski, M.; Costa, M. J.; Rand, D. A.; Stumpf, M. P., Sensitivity, robustness, and identifiability in stochastic chemical kinetics models, Proc. Natl. Acad. Sci. USA, 108, 8645-8650 (2011)
[27] Majda, A. J.; Gershgorin, B., Improving model fidelity and sensitivity for complex systems through empirical information theory, Proc. Natl. Acad. Sci. USA, 108, 10044-10049 (2011) · Zbl 1256.94026
[28] Majda, A. J.; Gershgorin, B., Quantifying uncertainty in climate change science through empirical information theory, Proc. Natl. Acad. Sci. USA, 107, 14958-14963 (2010)
[29] Chun, M.-H.; Han, S.-J.; Tak, N.-I., An uncertainty importance measure using a distance metric for the change in a cumulative distribution function, Reliab. Eng. Syst. Saf., 70, 313-321 (2000)
[30] Borgonovo, E., Measuring uncertainty importance: investigation and comparison of alternative approaches, Risk Anal., 26, 1349-1361 (2006)
[31] Liu, H.; Chen, W.; Sudjianto, A., Relative entropy based method for probabilistic sensitivity analysis in engineering design, J. Mech. Des., 128, 326-336 (2006)
[32] Borgonovo, E., A new uncertainty importance measure, Reliab. Eng. Syst. Saf., 92, 771-784 (2007)
[33] Liu, Q.; Homma, T., A new computational method of a moment-independent uncertainty importance measure, Reliab. Eng. Syst. Saf., 94, 1205-1211 (2009)
[34] Castaings, W.; Borgonovo, E.; Morris, M.; Tarantola, S., Sampling strategies in density-based sensitivity analysis, Environ. Model. Softw., 38, 13-26 (2012)
[35] Park, C. K.; Ahn, K.-I., A new approach for measuring uncertainty importance and distributional sensitivity in probabilistic safety assessment, Reliab. Eng. Syst. Saf., 46, 253-261 (1994)
[36] Lüdtke, N.; Panzeri, S.; Brown, M.; Broomhead, D. S.; Knowles, J.; Montemurro, M. A.; Kell, D. B., Information-theoretic sensitivity analysis: a general method for credit assignment in complex networks, J. R. Soc. Interface, 5, 223-235 (2008)
[37] Vetter, C.; Taflanidis, A. A., Global sensitivity analysis for stochastic ground motion modeling in seismic-risk assessment, Soil Dyn. Earthq. Eng., 38, 128-143 (2012)
[38] Wainwright, M. J.; Jordan, M. I., Graphical models, exponential families, and variational inference, Found. Trends Mach. Learn., 1 (2008) · Zbl 1193.62107
[39] Blei, D. M.; Kucukelbir, A.; McAuliffe, J. D., Variational inference: a review for statisticians, J. Am. Stat. Assoc., 112, 859-877 (2017)
[40] Bishop, C. M., Pattern Recognition and Machine Learning (2006), Springer-Verlag: Springer-Verlag New York · Zbl 1107.68072
[41] Burnham, K. P.; Anderson, D. R., Model Selection and Multimodel Inference (2002), Springer-Verlag: Springer-Verlag New York · Zbl 1005.62007
[42] Kraskov, A.; Stögbauer, H.; Grassberger, P., Estimating mutual information, Phys. Rev. E, 69, Article 066138 pp. (2004)
[43] Paninski, L., Estimation of entropy and mutual information, Neural Comput., 15, 1191-1253 (2003) · Zbl 1052.62003
[44] Antos, A.; Kontoyiannis, I., Convergence properties of functional estimates for discrete distributions, Random Struct. Algorithms, 19, 163-193 (2001) · Zbl 0985.62006
[45] Ali, S. M.; Silvey, S. D., A general class of coefficients of divergence of one distribution from another, J. R. Stat. Soc. B, 131-142 (1966) · Zbl 0203.19902
[46] Csiszár, I., Information-type measures of difference of probability distributions and indirect observations, Studia Sci. Math. Hung., 2, 299-318 (1967) · Zbl 0157.25802
[47] Liese, F.; Vajda, I., On divergences and informations in statistics and information theory, IEEE Trans. Inf. Theory, 52, 4394-4412 (2006) · Zbl 1287.94025
[48] Hall, E. J.; Katsoulakis, M. A., Robust information divergences for model-form uncertainty arising from sparse data in random PDE, SIAM/ASA J. Uncertain. Quantificat., 6, 1364-1394 (2018) · Zbl 07003639
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.