×

Upper bounds for the first eigenvalue of a Jacobi type operator via anisotropic mean curvatures. (English) Zbl 1359.53008

Summary: Our purpose in this article is to obtain sharp upper estimates for the first positive eigenvalue of a Jacobi type operator, which is a suitable extension of the linearized operators of the higher order mean curvatures of a closed hypersurface immersed in the Euclidean space, through its anisotropic mean curvatures.

MSC:

53A07 Higher-dimensional and -codimensional surfaces in Euclidean and related \(n\)-spaces
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
53C20 Global Riemannian geometry, including pinching
58J50 Spectral problems; spectral geometry; scattering theory on manifolds
Full Text: DOI

References:

[1] Alías L.J., Malacarne J.M.: On the first eingenvalue of the linearized operator of the highter order mean curvature for closed hypersurfaces in spaces forms. Ill. J. Math. 48, 219-240 (2004) · Zbl 1038.53061
[2] Barbosa J.L.M., Colares A.G.: Stability of hypersurfaces with constant r-mean curvature. Ann. Global Anal. Geom. 15, 277-297 (1997) · Zbl 0891.53044 · doi:10.1023/A:1006514303828
[3] Clarenz U.: The Wulff-shape minimizes an anisotropic Willmore functional. Interfaces Free Boundaries 6, 351-359 (2004) · Zbl 1072.35184 · doi:10.4171/IFB/104
[4] Colares A.G., da Silva J.F.: Stable hypersurfaces as minima of the integral of an anisotropic mean curvature preserving a linear combination of area and volume. Math. Z. 275, 595-623 (2013) · Zbl 1278.53061 · doi:10.1007/s00209-013-1149-6
[5] de Lima H.F., Velásquez M.A.L., Sousa A.F.: On the stability of hypersurfaces in space forms. J. Math. Anal. Appl. 406, 147-157 (2013) · Zbl 1309.53050 · doi:10.1016/j.jmaa.2013.04.044
[6] He Y., Li H.: A new variational characterization of the Wulff shape. Diff. Geom. Appl. 26, 377-390 (2008) · Zbl 1146.53035 · doi:10.1016/j.difgeo.2007.11.030
[7] He Y., Li H.: Integral formulae of Minkowski type and new characterization of the Wulff shape. Acta Math. Sin. 24, 697-704 (2008) · Zbl 1152.53047 · doi:10.1007/s10114-007-7116-6
[8] He Y.J., Li H., Ge J.Q.: Compact embedded hypersurfaces with constant higher order anisotropic mean curvatures. Indiana Univ. Math. J. 58, 853-868 (2009) · Zbl 1166.53035 · doi:10.1512/iumj.2009.58.3515
[9] Hsiung C.-C.: Some integral formulas for closed hypersurfaces. Math. Scand. 2, 286-294 (1954) · Zbl 0057.14603 · doi:10.7146/math.scand.a-10415
[10] Koiso M., Palmer B.: Geometry and stability of surfaces with constant anisotropic mean curvature. Indiana Univ. Math. J. 54(6), 1817-1852 (2005) · Zbl 1120.58010 · doi:10.1512/iumj.2005.54.2613
[11] Palmer B.: Stability of the Wulff shape. Proc. Am. Math. Soc. 126, 3661-3667 (1988) · Zbl 0924.53009 · doi:10.1090/S0002-9939-98-04641-3
[12] Reilly R.C.: Variational properties of functions of the mean curvature for hypersurfaces in space forms. J. Diff. Geom. 8, 465-477 (1973) · Zbl 0277.53030
[13] Reilly R.C.: On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean. Comment. Math. Helv. 52, 525-533 (1977) · Zbl 0382.53038 · doi:10.1007/BF02567385
[14] Roth J.: Upper bounds for the first eigenvalue of the Laplacian of hypersurfaces in terms of anisotropic mean curvatures. Results Math. 64, 383-403 (2013) · Zbl 1278.53011 · doi:10.1007/s00025-013-0322-x
[15] Takahashi T.: Minimal immersions of Riemannian manifolds. J. Math. Soc. Jpn. 18, 380-385 (1966) · Zbl 0145.18601 · doi:10.2969/jmsj/01840380
[16] Taylor J.: Crystalline variational problems. Bull. Am. Math. Soc. 84, 568-588 (1978) · Zbl 0392.49022 · doi:10.1090/S0002-9904-1978-14499-1
[17] Veeravalli A.R.: On the first Laplacian eigenvalue an the center of gravity of compact hypersurfaces. Comment. Math. Helv. 76, 155-160 (2001) · Zbl 0998.53035 · doi:10.1007/s000140050153
[18] Winklmann S.: A note on the stability of the Wulff shape. Arch. Math. 87, 272-279 (2006) · Zbl 1112.53032 · doi:10.1007/s00013-006-1685-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.