×

Monte Carlo methods for estimating, smoothing, and filtering one- and two-factor stochastic volatility models. (English) Zbl 1344.91016

Summary: One- and two-factor stochastic volatility models are assessed over three sets of stock returns data: S&P 500, DJIA, and Nasdaq. Estimation is done by simulated maximum likelihood using techniques that are computationally efficient, robust, straightforward to implement, and easy to adapt to different models. The models are evaluated using standard, easily interpretable time-series tools. The results are broadly similar across the three data sets. The tests provide no evidence that even the simple single-factor models are unable to capture the dynamics of volatility adequately; the problem is to get the shape of the conditional returns distribution right. None of the models come close to matching the tails of this distribution. Including a second factor provides only a relatively small improvement over the single-factor models. Fitting this aspect of the data is important for option pricing and risk management.

MSC:

91G60 Numerical methods (including Monte Carlo methods)
62P05 Applications of statistics to actuarial sciences and financial mathematics
91B70 Stochastic models in economics
91G70 Statistical methods; risk measures

Software:

BayesDA

References:

[1] Alizadeh, S.; Brandt, M. W.; Diebold, F. X., Range-based estimation of stochastic volatility models, Journal of Finance, 57, 1047-1091 (2002)
[2] Andersen, T. G.; Benzoni, L.; Lund, J., An empirical investigation of continuous-time equity return models, Journal of Finance, 57, 1239-1284 (2002)
[3] Andersen, T. G.; Bollerslev, T.; Diebold, F. X.; Labys, P., Modeling and forecasting realized volatility, Econometrica, 71, 579-625 (2003) · Zbl 1142.91712
[4] Barndorff-Nielsen, O. E.; Shephard, N., Econometric analysis of realized volatility and its use in estimating stochastic volatility models, Journal of the Royal Statistical Society, Series B, 64, 253-280 (2002) · Zbl 1059.62107
[5] Berkowitz, J., Testing density forecasts, with applications to risk management, Journal of Business and Economic Statistics, 19, 465-474 (2001)
[6] Bollerslev, T.; Mikkelsen, H., Modelling and pricing long-memory in stock market volatility, Journal of Econometrics, 73, 151-184 (1996) · Zbl 0960.62560
[7] Bontemps, C.; Meddahi, N., Testing normalitya GMM approach, Journal of Econometrics, 124, 149-186 (2005) · Zbl 1336.62056
[8] Chernov, M.; Gallant, A. R.; Ghysels, E.; Tauchen, G., Alternative models for stock price dynamics, Journal of Econometrics, 116, 225-257 (2003) · Zbl 1043.62087
[9] Chib, S.; Nardari, F.; Shephard, N., Markov chain Monte Carlo methods for stochastic volatility methods, Journal of Econometrics, 108, 281-316 (2002) · Zbl 1099.62539
[10] Danielson, J., Stochastic volatility in asset pricesestimation with simulated maximum likelihood, Journal of Econometrics, 64, 374-400 (1994) · Zbl 0825.62953
[11] Danielson, J.; Richard, J.-F., Accelerated Gaussian importance sampler with application to dynamic latent variable models, Journal of Applied Econometrics, 8, 153-173 (1993)
[12] Ding, Z.; Granger, C.; Engle, R., A long memory property of stock market returns and a new model, Journal of Empirical Finance, 1, 83-108 (1993)
[13] Duffie, D.; Singleton, K. J., Simulated moments estimation of Markov models of asset prices, Econometrica, 61, 929-952 (1993) · Zbl 0783.62099
[14] Durbin, J.; Koopman, S., Monte Carlo maximum likelihood estimation for non-Gaussian state space models, Biometrika, 84, 669-684 (1997) · Zbl 0888.62086
[15] Durbin, J.; Koopman, S., Time series analysis of non-Gaussian observations based on state space models from both classical and Bayesian perspectives, Journal of the Royal Statistical Society, Series B, 62, 3-56 (2000) · Zbl 0945.62084
[16] Durham, G. B.; Gallant, A. R., Numerical techniques for simulated maximum likelihood estimation of stochastic differential equations, Journal of Business and Economic Statistics, 20, 297-316 (2002)
[17] Engle, R. F.; Lee, G. G., A permanent and transitory component model of stock return volatility, (Engle, R. F.; White, H., Cointegration, Causality, and ForecastingA Festschrift in Honor of Clive W.J. Granger (1998), Oxford University Press: Oxford University Press Oxford), 475-497
[18] Eraker, B., MCMC analysis of diffusion models with application to finance, Journal of Business and Economic Statistics, 19, 177-191 (2001)
[19] Eraker, B.; Johannes, M.; Polson, N. G., The impact of jumps in volatility and returns, Journal of Finance, 58, 1269-1300 (2003)
[20] Fridman, M.; Harris, L., A maximum likelihood approach for non-Gaussian stochastic volatility models, Journal of Business and Economic Statistics, 16, 284-291 (1998)
[21] Gallant, A. R.; Tauchen, G. E., Which moments to match?, Econometric Theory, 12, 657-681 (1996)
[22] Gallant, A. R.; Hsieh, D.; Tauchen, G. E., Estimation of stochastic volatility models with diagnostics, Journal of Econometrics, 81, 159-192 (1997) · Zbl 0904.62134
[23] Gallant, A. R.; Hsu, C.-T.; Tauchen, G. E., Using daily range data to calibrate volatility diffusions and extract the forward integrated variance, Review of Economics and Statistics, 81, 617-631 (1999)
[24] Gelman, A.; Carlin, J.; Stern, H.; Rubin, D., Bayesian Data Analysis (1995), Chapman & Hall: Chapman & Hall London
[25] Geweke, J., Bayesian inference in econometric models using Monte Carlo integration, Econometrica, 57, 1317-1339 (1989) · Zbl 0683.62068
[26] Geweke, J., Amisano, G., 2001. Compound Markov mixture models with applications in finance. Manuscript, University of Iowa.; Geweke, J., Amisano, G., 2001. Compound Markov mixture models with applications in finance. Manuscript, University of Iowa.
[27] Gordon, N.; Salmond, D.; Smith, A., Novel approach to nonlinear/non-Gaussian Bayesian state estimation, IEEE Proceedings-F, 140, 107-113 (1993)
[28] Gouriéroux, C.; Monfort, A., Simulation-Based Econometric Methods (1996), Oxford University Press: Oxford University Press Oxford, UK · Zbl 1420.91461
[29] Greene, W. H., Econometric analysis (2002), Prentice-Hall: Prentice-Hall Upper Saddle River, New Jersey
[30] Hamilton, J., Analysis of time series subject to changes in regime, Journal of Econometrics, 45, 39-70 (1990) · Zbl 0723.62050
[31] Jacquier, E.; Polson, N. G.; Rossi, P. E., Bayesian analysis of stochastic volatility models, Journal of Business and Economic Statistics, 12, 371-389 (1994)
[32] Jacquier, E., Polson, N.G., Rossi, P.E., 2002. Bayesian analysis of stochastic volatility models with fat-tails and correlated errors. Journal of Econometrics 122, 185-212.; Jacquier, E., Polson, N.G., Rossi, P.E., 2002. Bayesian analysis of stochastic volatility models with fat-tails and correlated errors. Journal of Econometrics 122, 185-212. · Zbl 1328.91254
[33] Jones, C. S., The dynamics of stochastic volatilityevidence from underlying and options markets, Journal of Econometrics, 116, 181-224 (2003) · Zbl 1016.62122
[34] Judd, K. L., Numerical Methods in Economics (1998), MIT Press: MIT Press Cambridge, MA · Zbl 0941.00048
[35] Kim, S.; Shephard, N.; Chib, S., Stochastic volatilitylikelihood inference and comparison with ARCH models, Review of Economic Studies, 65, 361-393 (1998) · Zbl 0910.90067
[36] Kloek, T.; van Dijk, H., Bayesian estimates of equation system parametersan application of integration by Monte Carlo, Econometrica, 46, 1-19 (1978) · Zbl 0376.62014
[37] Koopman, S.J., Jungbacker, B., Hol, E., 2005. Forecasting daily variability of the S&P 100 stock index using historical, realised, and implied volatility measurements. Journal of Empirical Finance, forthcoming.; Koopman, S.J., Jungbacker, B., Hol, E., 2005. Forecasting daily variability of the S&P 100 stock index using historical, realised, and implied volatility measurements. Journal of Empirical Finance, forthcoming.
[38] Liesenfeld, R.; Richard, J.-F., Univariate and multivariate stochastic volatility modelsestimation and diagnostics, Journal of Empirical Finance, 10, 505-531 (2003)
[39] Pitt, M. K.; Shephard, N., Filtering via simulationauxiliary particle filter, Journal of the American Statistical Association, 446, 590-599 (1999) · Zbl 1072.62639
[40] Sandmann, G.; Koopman, S. J., Estimation of stochastic volatility models via Monte Carlo maximum likelihood, Journal of Econometrics, 87, 271-301 (1998) · Zbl 0937.62110
[41] Shephard, N.; Pitt, M., Likelihood analysis of non-Gaussian measurement time series, Biometrika, 84, 653-667 (1997) · Zbl 0888.62095
[42] Yu, J., 2004. On leverage in a stochastic volatility model. Journal of Econometrics, forthcoming.; Yu, J., 2004. On leverage in a stochastic volatility model. Journal of Econometrics, forthcoming.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.