×

Complex length of short curves and minimal fibrations of hyperbolic three-manifolds fibering over the circle. (English) Zbl 1418.53066

Summary: We investigate the maximal solid tubes around short simple closed geodesics in hyperbolic three-manifolds and how the complex length of curves relates to closed least area incompressible minimal surfaces. As applications, we prove the existence of closed hyperbolic three-manifolds fibering over the circle which are not foliated by closed incompressible minimal surfaces isotopic to the fiber. We also show the existence of quasi-Fuchsian manifolds containing arbitrarily many embedded closed incompressible minimal surfaces. Our strategy is to prove main theorems under natural geometric conditions on the complex length of closed curves on a fibered hyperbolic three-manifold, then by computer programs, we find explicit examples where these conditions are satisfied.

MSC:

53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
53C22 Geodesics in global differential geometry
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
30F40 Kleinian groups (aspects of compact Riemann surfaces and uniformization)
57M05 Fundamental group, presentations, free differential calculus

References:

[1] I.Agol, ‘Volume change under drilling’, Geom. Topol.6 (2002) 905-916. · Zbl 1031.57014
[2] I.Agol, M.Culler and P. B.Shalen, ‘Dehn surgery, homology and hyperbolic volume’, Algebr. Geom. Topol.6 (2006) 2297-2312. · Zbl 1129.57019
[3] M. T.Anderson, ‘Complete minimal hypersurfaces in hyperbolic \(n\)‐manifolds’, Comment. Math. Helv.58 (1983) 264-290. · Zbl 0549.53058
[4] M.Bell, T.Hall and S.Schleimer, ‘Twister (computer software), version 2.4.1’, 2008-2014, https://bitbucket.org/Mark_Bell/twister/.
[5] F.Bonahon, ‘Bouts des variétés hyperboliques de dimension 3’, Ann. of Math. (2) 124 (1986) 71-158. · Zbl 0671.57008
[6] W.Breslin, ‘Short geodesics in hyperbolic 3‐manifolds’, Algebr. Geom. Topol.11 (2011) 735-745. · Zbl 1221.57027
[7] J. F.Brock and K. W.Bromberg, ‘On the density of geometrically finite Kleinian groups’, Acta Math.192 (2004) 33-93. · Zbl 1055.57020
[8] K.Bromberg, ‘Projective structures with degenerate holonomy and the Bers density conjecture’, Ann. of Math. (2) 166 (2007) 77-93. · Zbl 1137.30014
[9] D.Calegari and D.Gabai, ‘Shrinkwrapping and the taming of hyperbolic 3‐manifolds’, J. Amer. Math. Soc.19 (2006) 385-446. · Zbl 1090.57010
[10] V.Chuckrow, ‘On Schottky groups with applications to Kleinian groups’, Ann. of Math. (2) 88 (1968) 47-61. · Zbl 0186.40603
[11] M.Culler, N. M.Dunfield, M.Goerner and J. R.Weeks, ‘SnapPy, a computer program for studying the geometry and topology of 3‐manifolds’, 2016, http://snappy.computop.org.
[12] M.Freedman, J.Hass and P.Scott, ‘Least area incompressible surfaces in 3‐manifolds’, Invent. Math.71 (1983) 609-642. · Zbl 0482.53045
[13] D.Gabai, G. R.Meyerhoff and P.Milley, ‘Volumes of tubes in hyperbolic 3‐manifolds’, J. Differential Geom.57 (2001) 23-46. · Zbl 1029.57014
[14] W.Goldman and R.Wentworth, ‘Energy of twisted harmonic maps of Riemann surfaces’, In the tradition of Ahlfors‐Bers. IV, Contemporary Mathematics 432 (eds D.Canary (ed.), J.Gilman (ed.), J.Heinonen (ed.) and H.Masur (ed.); American Mathematical Society, Providence, RI, 2007) 45-61. · Zbl 1137.57002
[15] R.Guo, Z.Huang and B.Wang, ‘Quasi‐Fuchsian three‐manifolds and metrics on Teichmüller space’, Asian J. Math.14 (2010) 243-256. · Zbl 1213.30081
[16] R.Harvey and H. B.Lawson, Jr,‘Calibrated foliations (foliations and mass‐minimizing currents)’, Amer. J. Math.104 (1982) 607-633. · Zbl 0508.57021
[17] J.Hass, ‘Minimal surfaces in foliated manifolds’, Comment. Math. Helv.61 (1986) 1-32. · Zbl 0601.53024
[18] J.Hass, ‘Minimal surfaces and the topology of three‐manifolds’, Global theory of minimal surfaces, Clay Mathematics Proceedings 2 (ed. D.Hoffman (ed.); American Mathematical Society, Providence, RI, 2005) 705-724. · Zbl 1100.57021
[19] J.Hass, ‘Minimal fibrations and foliations of hyperbolic 3‐manifolds,’ Preprint, 2015, arXiv:1512.04145.
[20] J.Hass and P.Scott, ‘The existence of least area surfaces in 3‐manifolds’, Trans. Amer. Math. Soc.310 (1988) 87-114. · Zbl 0711.53008
[21] Z.Huang and M.Lucia, ‘Minimal immersions of closed surfaces in hyperbolic three‐manifolds’, Geom. Dedicata158 (2012) 397-411. · Zbl 1242.53071
[22] Z.Huang and B.Wang, ‘On almost‐Fuchsian manifolds’, Trans. Amer. Math. Soc.365 (2013) 4679-4698. · Zbl 1350.53015
[23] Z.Huang and B.Wang, ‘Counting minimal surfaces in quasi‐Fuchsian manifolds’, Trans. Amer. Math. Soc.367 (2015) 6063-6083. · Zbl 1322.53013
[24] Z.Huang and B.Wang, ‘Closed minimal surfaces in cusped hyperbolic three‐manifolds’, Geom. Dedicata189 (2017) 17-37. · Zbl 1380.53064
[25] T.Jørgensen and P.Klein, ‘Algebraic convergence of finitely generated Kleinian groups’, Q. J. Math.33 (1982) 325-332. · Zbl 0499.30033
[26] A.Marden, ‘The geometry of finitely generated Kleinian groups’, Ann. of Math. (2) 99 (1974) 383-462. · Zbl 0282.30014
[27] K.Matsuzaki and M.Taniguchi, Hyperbolic manifolds and Kleinian groups, Oxford Mathematical Monographs (The Oxford University Press, New York, 1998). · Zbl 0892.30035
[28] C. T.McMullen, Renormalization and 3‐manifolds which fiber over the circle, Annals of Mathematics Studies 142 (Princeton University Press, Princeton, NJ, 1996). · Zbl 0860.58002
[29] W. H.MeeksIII and S. T.Yau, ‘The classical Plateau problem and the topology of three‐dimensional manifolds. The embedding of the solution given by Douglas‐Morrey and an analytic proof of Dehn’s lemma’, Topology21 (1982) 409-442. · Zbl 0489.57002
[30] W. H.MeeksIII and S. T.Yau, ‘The existence of embedded minimal surfaces and the problem of uniqueness’, Math. Z.179 (1982) 151-168. · Zbl 0479.49026
[31] R.Meyerhoff, ‘A lower bound for the volume of hyperbolic 3‐manifolds’, Canad. J. Math.39 (1987) 1038-1056. · Zbl 0694.57005
[32] C.Millichap, ‘Mutations and short geodesics in hyperbolic 3‐manifolds,’ Comm. Anal. Geom.25 (2017) 625-683. · Zbl 1385.57018
[33] Y. N.Minsky, ‘The classification of punctured‐torus groups’, Ann. of Math. (2) 149 (1999) 559-626. · Zbl 0939.30034
[34] Y. N.Minsky, ‘End invariants and the classification of hyperbolic 3‐manifolds’, Current developments in mathematics (eds D.Jerison (ed.), B.Mazur (ed.), T.Mrowka (ed.), W.Schmid (ed.), R. P.Stanley (ed.) and S.‐T.Yau (ed.); International Press, Somerville, MA, 2003) 181-217. · Zbl 1049.57010
[35] H.Mori, ‘On surfaces of right helicoid type in \(\mathbb{H}^3\)’, Bull. Braz. Math. Soc. (N.S.)13 (1982) 57-62. · Zbl 0572.53041
[36] J.‐P.Otal, ‘Sur le nouage des géodésiques dans les variétés hyperboliques’, C. R. Acad. Sci. Paris Sér. I Math.320 (1995) 847-852. · Zbl 0840.57008
[37] J.‐P.Otal, ‘Le théorème d’hyperbolisation pour les variétés fibrées de dimension 3’, Astérisque 235 (Société mathématique de France, Paris, 1996). · Zbl 0855.57003
[38] J.‐P.Otal, The hyperbolization theorem for fibered 3‐manifolds, SMF/AMS Texts and Monographs 7 (American Mathematical Society, Providence, RI, 2001). (Translated from the 1996 French original by Leslie D. Kay.) · Zbl 0986.57001
[39] J.‐P.Otal, ‘Les géodésiques fermées d’une variété hyperbolique en tant que nœuds’, Kleinian groups and hyperbolic 3‐manifolds, London Mathematical Society Lecture Note Series 299 (eds Y.Komori (ed.), V.Markovic (ed.) and C.Series (ed.); Cambridge University Press, Cambridge, 2003) 95-104. · Zbl 1049.57007
[40] J. H.Rubinstein, ‘Problems around 3‐manifolds’, Workshop on Heegaard splittings, Geometry & Topology Monographs 12 (eds C.Gordon (ed.) and Y.Moriah (ed.); Geometry & Topology Publications, Coventry, 2007) 285-298. · Zbl 1139.57019
[41] J.Sacks and K. K.Uhlenbeck, ‘Minimal immersions of closed Riemann surfaces’, Trans. Amer. Math. Soc.271 (1982) 639-652. · Zbl 0527.58008
[42] R.Schoen and S. T.Yau, ‘Existence of incompressible minimal surfaces and the topology of three‐dimensional manifolds with nonnegative scalar curvature’, Ann. of Math. (2) 110 (1979) 127-142. · Zbl 0431.53051
[43] D.Sullivan, ‘A homological characterization of foliations consisting of minimal surfaces’, Comment. Math. Helv.54 (1979) 218-223. · Zbl 0409.57025
[44] D.Sullivan, ‘Quasiconformal homeomorphisms and dynamics. II. Structural stability implies hyperbolicity for Kleinian groups’, Acta Math.155 (1985) 243-260. · Zbl 0606.30044
[45] W. P.Thurston, The geometry and topology of three‐manifolds (Princeton University, Princeton, NJ, 1980).
[46] W. P.Thurston, ‘Three‐dimensional manifolds, Kleinian groups and hyperbolic geometry’, Bull. Amer. Math. Soc. (N.S.)6 (1982) 357-381. · Zbl 0496.57005
[47] W. P.Thurston, ‘Hyperbolic structures on 3‐manifolds, II: Surface groups and 3‐manifolds which fiber over the circle’, Preprint, 1998, arXiv:math/9801045.
[48] A. A.Tuzhilin, ‘Global properties of minimal surfaces in \(\mathbf{R}^3\) and \(\mathbf{H}^3\) and their Morse type indices’, Minimal surfaces, Advances in Soviet Mathematics 15 (ed. A. T.Fomenko (ed.); American Mathematical Society, Providence, RI, 1993) 193-233. · Zbl 0787.53009
[49] K. K.Uhlenbeck, ‘Closed minimal surfaces in hyperbolic 3‐manifolds’, Seminar on minimal submanifolds, Annals of Mathematics Studies 103 (E.Bombieri (ed.); Princeton University Press, Princeton, NJ, 1983) 147-168. · Zbl 0529.53007
[50] B.Wang, ‘Minimal surfaces in quasi‐Fuchsian 3‐manifolds’, Math. Ann.354 (2012) 955-966. · Zbl 1266.53011
[51] B.Wang, ‘Stability of catenoids and helicoids in hyperbolic space’, Asian J. Math., to appear. · Zbl 1420.53017
[52] N. J.Wielenberg, ‘Discrete Moebius groups: fundamental polyhedra and convergence’, Amer. J. Math.99 (1977) 861-877. · Zbl 0373.57024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.