×

Linear slices close to a Maskit slice. (English) Zbl 1305.30020

Let \(S\) be a torus with one open disk removed. Put \(N=S\times [0,1 ]\) and \(P=\partial S \times [0,1]\). Let \(AH(N,P)\) be the space of faithful, type-preserving representations \(\rho: \pi_1(N) \to\mathrm{PSL}(2,\mathbb{C})\) with discrete images. In the paper under review, the author studies the topology of \(AH(N,P)\) near the Maskit slice by the trace coordinates. The author answers the question whether the linear slice \(L(\beta)\) converges to the Maskit slice \(L(2)\) as \(\beta\in \mathbb{C}\setminus [-2,2]\) tends to 2. The answer depends on whether a sequence of \(\beta_n\in \mathbb{C}\setminus [-2,2]\) converges to 2 horocyclically or tangentially. The theory of K. W. Bromberg [Duke Math. J. 156, No. 1, 387–427 (2011; Zbl 1213.30078)] on a local model of \(AH(N,P)\) plays an important role, so that the author describes a relation between Bromberg’s coordinates and trace coordinates for \(AH(N,P)\). The non-local connectivity of \(AH(N,P)\) is also considered and it is shown that there exists a linear slice \(L(\alpha)\) which is not locally connected at \(2\in \partial L(\alpha)\). The main results are also described in terms of complex Fenchel-Nielsen coordinates. The paper provides figures of linear slices generated by computer.

MSC:

30F40 Kleinian groups (aspects of compact Riemann surfaces and uniformization)
57M50 General geometric structures on low-dimensional manifolds

Citations:

Zbl 1213.30078

References:

[1] Anderson, J.W., Canary, R.D.: Algebraic limits of Kleinian groups which rearrange the pages of a book. Invent. Math. 126(2), 205-214 (1996) · Zbl 0874.57012 · doi:10.1007/s002220050094
[2] Brock, J.F., Canary, R.D., Minsky, Y.N.: The classification of Kleinian surface groups, II: The ending lamination conjecture. Ann. Math. 176(1), 1-149 (2012) · Zbl 1253.57009 · doi:10.4007/annals.2012.176.1.1
[3] Bromberg, K.W.: The space of Kleinian punctured torus groups is not locally connected. Duke Math. J. 156, 387-427 (2011) · Zbl 1213.30078 · doi:10.1215/00127094-2010-215
[4] Bowditch, B.H.: Markoff triples and quasi-Fuchsian groups. Proc. Lond. Math. Soc. 77(3), 697-736 (1998) · Zbl 0928.11030 · doi:10.1112/S0024611598000604
[5] Canary, RD; Biswas, I. (ed.); Kulkarni, R. (ed.); Mitra, S. (ed.), Introductory bumponomics: the topology of deformation spaces of hyperbolic 3-manifolds, 131-150 (2010), London · Zbl 1202.57018
[6] Goldman, W.M.: Trace coordinates on Fricke spaces of some simple hyperbolic surfaces. In: Papadopoulos, A. (ed.) Handbook of Teichmüller theory. Vol. II, pp. 611-684. IRMA Lectures in Mathematics and Theoretical Physics, vol 13, Eur. Math. Soc., Zürich (2009). · Zbl 1175.30043
[7] Ito, K.: Convergence and divergence of Kleinian punctured torus groups. Am. J. Math. 134, 861-889 (2012) · Zbl 1250.30040 · doi:10.1353/ajm.2012.0024
[8] Jørgensen, T.: On discrete groups of Mobius transformations. Am. J. Math. 98(3), 739-749 (1976) · Zbl 0336.30007 · doi:10.2307/2373814
[9] Jørgensen, T., Klein, P.: Algebraic convergence of finitely generated Kleinian groups. Quart. J. Math. Oxf. Ser. 33(131), 325-332 (1982) · Zbl 0499.30033 · doi:10.1093/qmath/33.3.325
[10] Kourouniotis, C.: Complex length coordinates for quasi-Fuchsian groups. Mathematika 41(1), 173-188 (1994) · Zbl 0801.30036 · doi:10.1112/S0025579300007270
[11] Keen, L., Series, C.: Pleating coordinates for the Maskit embedding of the Teichmüller space of punctured tori. Topology 32(4), 719-749 (1993) · Zbl 0794.30037 · doi:10.1016/0040-9383(93)90048-Z
[12] Komori, Y., Yamashita, Y.: Linear slices of the quasi-Fuchsian space of punctured tori. Conform. Geom. Dyn. 16, 89-102 (2012) · Zbl 1250.30041 · doi:10.1090/S1088-4173-2012-00237-8
[13] Magid, A.D.: Deformation spaces of Kleinian surface groups are not locally connected. Geom. Topol. 16, 1247-1320 (2012) · Zbl 1257.57023 · doi:10.2140/gt.2012.16.1247
[14] Marden, A.: The geometry of finitely generated kleinian groups. Ann. Math. 99, 383-462 (1974) · Zbl 0282.30014 · doi:10.2307/1971059
[15] McMullen, C.T.: Renormalization and 3-manifolds which fiber over the circle. Ann. Math. Stud. 142. Princeton University Press (1996). · Zbl 0860.58002
[16] McMullen, C.T.: Complex earthquakes and Teichmüller theory. J. Am. Math. Soc. 11(2), 283-320 (1998) · Zbl 0890.30031 · doi:10.1090/S0894-0347-98-00259-8
[17] Minsky, Y.N.: The classification of punctured-torus groups. Ann. Math. 149(2), 559-626 (1999) · Zbl 0939.30034 · doi:10.2307/120976
[18] Mumford, D., Series, C., Wright, D.: Indra’s Pearls. The Vision of Felix. Klein Cambridge University Press, New York (2002) · Zbl 1141.00002 · doi:10.1017/CBO9781107050051
[19] Parker, J.R., Parkkonen, J.: Coordinates for quasi-Fuchsian punctured torus spaces. Epstein birthday schrift, (electronic). Geom. Topol. Monogr. 1, 451-478 (1998) · Zbl 0913.32005 · doi:10.2140/gtm.1998.1.451
[20] Sullivan, D.: Quasiconformal homeomorphisms and dynamics. II. Structural stability implies hyperbolicity for Kleinian groups. Acta Math. 155(3-4), 243-260 (1985) · Zbl 0606.30044 · doi:10.1007/BF02392543
[21] Tan, S.P.: Complex Fenchel-Nielsen coordinates for quasi-Fuchsian structures. Int. J. Math. 5(2), 239-251 (1994) · Zbl 0816.32017 · doi:10.1142/S0129167X94000140
[22] Wright, D.J.: The shape of the boundary of Maskit’s embedding of the Teichmüller space of once punctured tori. Preprint · Zbl 0939.30034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.