×

A graded Bayesian coherence notion. (English) Zbl 1304.03038

Summary: Coherence is a key concept in many accounts of epistemic justification within ‘traditional’ analytic epistemology. Within formal epistemology, too, there is a substantial body of research on coherence measures. However, there has been surprisingly little interaction between the two bodies of literature. The reason is that the existing formal literature on coherence measure operates with a notion of belief system that is very different from – what we argue is – a natural Bayesian formalisation of the concept of belief system from traditional epistemology. Therefore, formal epistemology has so far only been concerned with one particular – arguably not even very natural – way of formalising coherence of belief systems; it has by no means refuted the viability of coherentism. In contrast to the existing literature, we formalise belief systems as families of assignments of (conditional) degrees of belief (which may be compatible with several subjective probability measures). Within this framework, we propose a Bayesian formalisation of the thrust of L. BonJour’s coherence concept in [The structure of empirical knowledge. Cambridge: Harvard University Press (1985)], using a combination of Bayesian confirmation theory and basic graph theory. In excursions, we introduce graded notions for both logical and probabilistic consistency of belief systems – the latter being based on certain geometrical structures induced by probabilistic belief systems. For illustration, we reconsider BonJour’s “ravens” challenge [loc. cit., p. 95 f.]. Finally, potential objections to our proposed formal coherence notion are explored.

MSC:

03A10 Logic in the philosophy of science
62A01 Foundations and philosophical topics in statistics
62C10 Bayesian problems; characterization of Bayes procedures

References:

[1] Akiba, K. (2000). Shogenji’s probabilistic measure of coherence is incoherent. Analysis, 60(4), 356-359. · Zbl 0974.03506 · doi:10.1093/analys/60.4.356
[2] Alchourrón, C. E., Gärdenfors, P., & Makinson, D. (1985). On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic, 50(2), 510-530. · Zbl 0578.03011 · doi:10.2307/2274239
[3] Arló-Costa, H., & Parikh, R. (2005). Conditional probability and defeasible inference. Journal of Philosophical Logic, 34(1), 97-119. · Zbl 1082.03023 · doi:10.1007/s10992-004-5553-6
[4] Arló-Costa, H., & Pedersen, A. P. (2012). Belief and probability: A general theory of probability cores. International Journal of Approximate Reasoning, 53(3), 293-315. · Zbl 1259.03026 · doi:10.1016/j.ijar.2012.01.002
[5] Audi, R. (2011). Epistemology: A contemporary introduction to the theory of knowledge, 3rd ed. Oxford: Routledge.
[6] BonJour, L. (1985). The structure of empirical knowledge. Cambridge, MA: Harvard University Press.
[7] BonJour, L. (2010). The myth of knowledge. Philosophical Perspectives, 24(1), 57-83. · doi:10.1111/j.1520-8583.2010.00185.x
[8] Bovens, L., & Hartmann S. (2003). Bayesian epistemology. Oxford: Oxford University Press. · Zbl 1120.62001
[9] Bovens, L., & Hartmann, S. (2003). Solving the riddle of coherence. Mind, 112(448), 601-633. · doi:10.1093/mind/112.448.601
[10] Bovens, L., & Hartmann, S. (2005). Why there cannot be a single probabilistic measure of coherence. Erkenntnis, 63(3), 361-374. · Zbl 1098.03505 · doi:10.1007/s10670-005-4005-1
[11] Bovens, L., & Hartmann, S. (2006). An impossibility result for coherence rankings. Philosophical Studies, 128(1), 77-91. · doi:10.1007/s11098-005-4057-8
[12] Brendel, E. (1999). Coherence theory of knowledge: A gradational account. Erkenntnis, 50(2-3), 293-307. · Zbl 0952.03506 · doi:10.1023/A:1005538324684
[13] Carnap, R.; Nagel, E. (ed.); Suppes, P. (ed.); Tarski, A. (ed.), The aim of inductive logic, 303-318 (1962), Stanford, CA · Zbl 0143.01201
[14] Christensen, D. (2004). Putting logic in its place. Oxford: Clarendon Press. · Zbl 1088.03005 · doi:10.1093/0199263256.001.0001
[15] de Finetti, B. (1937). La prévision: Ses lois logiques, ses sources subjectives. Annales de l’Institut Henri Poincaré, 7(1), 1-68. · JFM 63.1070.02
[16] de Finetti, B. (1970). Teoria delle probabilità: Sintesi introduttiva con appendice critica. Volumi primo e secondo. Nuova Biblioteca Scientifica Einaudi. Giulio Einaudi Editore, Turin.
[17] de Finetti, B. (1974). Theory of probability: A critical introductory treatment. Vol. 1. Translated by Antonio Machì and Adrian Smith, with a foreword by D. V. Lindley. Wiley series in probability and mathematical statistics. London, New York, Sydney: Wiley. · Zbl 0328.60002
[18] Diestel, R. (2010). Graph theory, volume 173 of graduate texts in mathematics, 4 ed. Heidelberg: Springer. · Zbl 1204.05001
[19] Dietrich, F., & Moretti, L. (2005). On coherent sets and the transmission of confirmation. Philosophy of Science, 72(3), 403-424. · doi:10.1086/498471
[20] Dirac, G. A. (1963). Extensions of Menger’s theorem. Journal of the London Mathematical Society, 38, 148-161. · Zbl 0112.38606 · doi:10.1112/jlms/s1-38.1.148
[21] Dirac, G. A. (1966). Short proof of Menger’s graph theorem. Mathematika, 13, 42-44. · Zbl 0144.45102 · doi:10.1112/S0025579300004162
[22] Douven, I., & Meijs, W. (2006). Bootstrap confirmation made quantitative. Synthese, 149(1), 97-132. · Zbl 1103.03301 · doi:10.1007/s11229-004-6250-2
[23] Easwaran, K., & Fitelson, B. (2012). An “evidentialist” worry about Joyce’s argument for probabilism. Dialectica, 66(3), 425-433. · doi:10.1111/j.1746-8361.2012.01311.x
[24] Fajardo, S., & Keisler, H. J. (2002). Model theory of stochastic processes, volume 14 of Lecture Notes in Logic. A.K. Peters, Natick, MA. · Zbl 1020.60020
[25] Fitelson, B. (2003). A probabilistic theory of coherence. Analysis, 63(3), 194-199. · Zbl 1038.03520 · doi:10.1093/analys/63.3.194
[26] Fitelson, B., & McCarthy, D. (2012). Steps toward a new foundation for subjective probability. Work in progress, Munich Center for Mathematical Philosophy. · Zbl 1303.03032
[27] Foley, R.; Huber, F. (ed.); Schmidt-Petri, C. (ed.), Beliefs, degrees of belief, and the lockean thesis, 37-47 (2009), Dordrecht · Zbl 1169.03315
[28] Fumerton, R. (2006). Epistemology. Oxford: Blackwell.
[29] Glymour, C. (1980). Theory and evidence. Princeton, NJ: Princeton University Press.
[30] Grünwald, T. (1938). Ein neuer Beweis eines Mengerschen Satzes. Journal of the London Mathematical Society, 13, 188-192. · Zbl 0019.23701 · doi:10.1112/jlms/s1-13.3.188
[31] Hájek, A. (2012). Staying regular? Conference paper, 9th annual formal epistemology workshop. · Zbl 0995.68123
[32] Hansson, S. O., & Olsson, E. J. (1999). Providing foundations for coherentism. Erkenntnis, 51(2-3), 243-265. · Zbl 0962.03004 · doi:10.1023/A:1005510414170
[33] Hausdorff, F. (1918). Dimension und äußeres Maß. Mathematische Annalen, 79(1-2), 157-179. · JFM 46.0292.01 · doi:10.1007/BF01457179
[34] Herzberg, F. S. (2008). A definable nonstandard enlargement. Mathematical Logic Quarterly, 54(2), 167-175. · Zbl 1193.03085 · doi:10.1002/malq.200710022
[35] Herzberg, F. S. (2008). Addendum to “A definable nonstandard enlargement”. Mathematical Logic Quarterly, 54(6), 666-667. · Zbl 1193.03086 · doi:10.1002/malq.200810002
[36] Herzberg, F. S. (2010). The consistency of probabilistic regresses. A reply to Jeanne Peijnenburg and David Atkinson. Studia Logica, 94(3), 331-345. · Zbl 1197.03008 · doi:10.1007/s11225-010-9242-x
[37] Herzberg, F. S. (2013). The consistency of probabilistic regresses: Some implications for epistemological infinitism. Erkenntnis, 78(2), 371-382. · Zbl 1303.03032 · doi:10.1007/s10670-011-9358-z
[38] Herzberg, F. S. (2013). The dialectics of infinitism and coherentism: Inferential justification versus holism and coherence. Synthese, (forthcoming). doi:10.1007/s11229-013-0273-5. · Zbl 1310.03017
[39] Joyce, J. M.; Huber, F. (ed.); Schmidt Petri, C. (ed.), Accuracy and coherence: Prospects for an alethic epistemology of partial belief, 263-297 (2009), Dordrecht · Zbl 1170.03320
[40] Kanovei, V., Reeken, M. (2004). Nonstandard analysis, axiomatically. Springer monographs in mathematics. Berlin: Springer. · Zbl 1058.03002 · doi:10.1007/978-3-662-08998-9
[41] Kanovei, V., & Shelah, S. (2004). A definable nonstandard model of the reals. Journal of Symbolic Logic, 69(1), 159-164. · Zbl 1070.03044 · doi:10.2178/jsl/1080938834
[42] Kőnig, D. (1933). Über trennende Knotenpunkte in Graphen (nebst Anwendungen auf Determinanten und Matrizen). Acta Litterarum ac Scientiarum (Szeged), 6(2-3), 155-179. · Zbl 0007.32901
[43] Klein, P., & Warfield, T. A. (1994). What price coherence? Analysis, 54(3), 129-132. · doi:10.1093/analys/54.3.129
[44] Klein, P., & Warfield, T. A. (1996). No help for the coherentist. Analysis, 56(2), 118-121. · Zbl 0943.03659 · doi:10.1093/analys/56.2.118
[45] Lehrer, K. (2000). Theory of knowledge. Boulder, CO: Westview Press.
[46] Leitgeb, H. (2010). Reducing belief simpliciter to degrees of belief. Manuscript, University of Bristol. · Zbl 1320.03048
[47] Leitgeb, H., & Pettigrew, R. (2010). An objective justification of Bayesianism I. Measuring inaccuracy. Philosophy of Science, 77(2), 201-235. · doi:10.1086/651317
[48] Leitgeb, H., & Pettigrew, R. (2010). An objective justification of Bayesianism II. The consequences of minimizing inaccuracy. Philosophy of Science, 77(2), 236-272. · doi:10.1086/651318
[49] Lewis, C. I. (1946). An analysis of knowledge and valuation. Open Court, LaSalle, IL.
[50] Locke, J. (1979). In P. H. Nidditch (Ed.), An essay concerning human understanding. Oxford: Oxford University Press. · Zbl 0578.03011
[51] Makinson, D. C. (1965). The paradox of the preface. Analysis, 25(6), 205-207. · doi:10.1093/analys/25.6.205
[52] Meijs, W., & Douven, I. (2007). On the alleged impossibility of coherence. Synthese, 157(3), 347-360. · Zbl 1125.03005 · doi:10.1007/s11229-006-9060-x
[53] Menger, K. (1927). Zur allgemeinen Kurventheorie. Fundamenta Mathematica, 10, 96-115. · JFM 53.0561.01
[54] Miller, D. W. (forthcoming). Popper’s contributions to the theory of probability and its interpretation. In The Cambridge companion to popper. Cambridge: Cambridge University Press.
[55] Moretti, L., & Akiba, K. (2007). Probabilistic measures of coherence and the problem of belief individuation. Synthese, 154(1), 73-95. · Zbl 1119.03315 · doi:10.1007/s11229-005-0193-0
[56] Olsson, E. J. (2002). What is the problem of coherence and truth? Journal of Philosophy, 99(5), 246-272. · doi:10.2307/3655648
[57] Olsson, E. J. (2005). Against coherence: Truth, probability, and justification. Oxford: Oxford University Press. · doi:10.1093/0199279993.001.0001
[58] Olsson, E. J. (2005). The impossibility of coherence. Erkenntnis, 63(3), 387-412 (2006). · Zbl 1098.03515
[59] Pollock, J. L. (1986). The paradox of the preface. Philosophy of Science, 53(2), 246-258. · doi:10.1086/289309
[60] Popper, K., & Miller, D. W. (1987). Why probabilistic support is not inductive. Philosophical Transactions of the Royal Society of London. Series A: Mathematical and Physical Sciences, 321(1562), 569-591. · Zbl 0637.03003 · doi:10.1098/rsta.1987.0033
[61] Quine, W. V. O., & Ullian, J. (1970). The web of belief. New York: Random House.
[62] Rényi, A. (1955). On a new axiomatic theory of probability. Acta Mathematica Academiae Scientiarum Hungaricae, 6, 285-335. · Zbl 0067.10401 · doi:10.1007/BF02024393
[63] Robinson, A. (1961). Non-standard analysis. Nederlandse Akademie van Wetenschappen. Proceedings. Series A. Indagationes Mathematicae, 64, 432-440. · Zbl 0102.00708
[64] Robinson, A. (1996). Non-standard analysis. Princeton landmarks in mathematics. Princeton, NJ: Princeton University Press. · Zbl 0843.26012
[65] Schupbach, J. N. (2008). On the alleged impossibility of Bayesian coherentism. Philosophical Studies, 141(3), 323-331. · doi:10.1007/s11098-007-9176-y
[66] Shogenji, T. (1999). Is coherence truth conducive? Analysis, 59(4), 338-345. · doi:10.1093/analys/59.4.338
[67] Siebel, M., & Wolff, W. (2008). Equivalent testimonies as a touchstone of coherence measures. Synthese, 161(2), 167-182. · Zbl 1142.03319 · doi:10.1007/s11229-006-9155-4
[68] Stone, M. H. (1936). The theory of representations for Boolean algebras. Transactions of the American Mathematical Society, 40(1), 37-111. · JFM 62.0033.04
[69] Walley, P. (1991). Statistical reasoning with imprecise probabilities, volume 42 of monographs on statistics and applied probability. London: Chapman and Hall. · Zbl 0732.62004 · doi:10.1007/978-1-4899-3472-7
[70] Walley, P. (2000). Towards a unified theory of imprecise probability. International Journal of Approximate Reasoning, 24(2-3), 125-148. · Zbl 1007.28015 · doi:10.1016/S0888-613X(00)00031-1
[71] Wedgwood, R. (2012). Outright belief. Dialectica, 66(3), 309-329. · doi:10.1111/j.1746-8361.2012.01305.x
[72] Weichselberger, K. (2000). The theory of interval-probability as a unifying concept for uncertainty. International Journal of Approximate Reasoning, 24(2-3), 149-170. · Zbl 0995.68123 · doi:10.1016/S0888-613X(00)00032-3
[73] Whitney, H. (1932). Congruent graphs and the connectivity of graphs. American Journal of Mathematics, 54(1), 150-168. · Zbl 0003.32804 · doi:10.2307/2371086
[74] Wittgenstein, L. (1969). On certainty. Oxford: Blackwell.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.