×

Dispersive estimates and asymptotic expansions for Schrödinger equations in dimension one. (English) Zbl 1211.35092

Summary: We study the time decay of scattering solutions to one-dimensional Schrödinger equations and prove a weighted dispersive estimate with stronger time decay than the case of unweighted estimates for the non-resonant state. Furthermore, asymptotic expansions in time of scattering solutions are given. The key of the proof is the study of the Fourier properties of Jost functions. We improve the Fourier properties of Jost functions obtained by P. D’Ancona and L. Fanelli [Commun. Math. Phys. 268, No. 2, 415–438 (2006; Zbl 1127.35053)].

MSC:

35J10 Schrödinger operator, Schrödinger equation
35B45 A priori estimates in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
35C20 Asymptotic expansions of solutions to PDEs

Citations:

Zbl 1127.35053

References:

[1] G. Artbazar and K. Yajima, The \(L^p\)-continuity of wave operators for the one dimensional Schrödinger operators, J. Math. Sci. Univ. Tokyo, 7 (2000), 221-240. · Zbl 0976.34071
[2] P. D’Ancona and L. Fanelli, \(L^p\)-boundedness of the wave operators for the one dimensional Schrödinger operator, Comm. Math. Phys., 268 (2006), 415-438. · Zbl 1127.35053 · doi:10.1007/s00220-006-0098-x
[3] P. Deift and E. Trubowitz, Inverse scattering on the line, Comm. Pure Appl. Math., 33 (1979), 121-251. · Zbl 0388.34005 · doi:10.1002/cpa.3160320202
[4] B. Erdoğan and W. Schlag, Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: I, Dyn. Partial Differ. Equ., 1 (2004), 359-379. · Zbl 1080.35102 · doi:10.4310/DPDE.2004.v1.n4.a1
[5] B. Erdoğan and W. Schlag, Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: II, J. Anal. Math., 99 (2006), 199-248. · Zbl 1146.35324 · doi:10.1007/BF02789446
[6] M. Goldberg, Dispersive estimates for the three-dimensional Schrödinger equation with rough potentials, Amer. J. Math., 128 (2006), 731-750. · Zbl 1096.35027 · doi:10.1353/ajm.2006.0025
[7] M. Goldberg, Dispersive bounds for the three-dimensional Schrödinger equation with almost critical potentials, Geom. Funct. Anal., 16 (2006), 517-536. · Zbl 1158.35408 · doi:10.1007/s00039-006-0568-5
[8] M. Goldberg, Transport in the one-dimensional Schrödinger equation, Proc. Amer. Math. Soc., 135 (2007), 3171-3179. · Zbl 1123.35046 · doi:10.1090/S0002-9939-07-08897-1
[9] M. Goldberg and W. Schlag, Dispersive estimates for Schrödinger operators in dimensions one and three, Comm. Math. Phys., 251 (2004), 157-178. · Zbl 1086.81077 · doi:10.1007/s00220-004-1140-5
[10] A. Jensen, Spectral properties of Schrödinger operators and time-decay of the wave functions, Results in \(L^1(\R^m)\), \(m \geq 5\), Duke Math. J., 47 (1980), 57-80. · Zbl 0437.47009 · doi:10.1215/S0012-7094-80-04706-7
[11] A. Jensen and T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., 46 (1979), 583-611. · Zbl 0448.35080 · doi:10.1215/S0012-7094-79-04631-3
[12] J.-L. Journé, A. Soffer and C. D. Sogge, Decay estimates for Schrödinger operators, Comm. Pure Appl. Math., 44 (1991), 573-604. · Zbl 0743.35008 · doi:10.1002/cpa.3160440504
[13] M. Klaus, Low-energy behaviour of the scattering matrix for the Schrödinger equation on the line, Inverse Problems, 4 (1988), 505-512. · Zbl 0669.34030 · doi:10.1088/0266-5611/4/2/013
[14] J. Krieger and W. Schlag, Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension, J. Amer. Math. Soc., 19 (2006), 815-920. · Zbl 1281.35077 · doi:10.1090/S0894-0347-06-00524-8
[15] M. Murata, Asymptotic expansions in time for solution of Schrödinger-type equations, J. Funct. Anal., 49 (1982), 10-56. · Zbl 0499.35019 · doi:10.1016/0022-1236(82)90084-2
[16] I. Rodnianski and W. Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math., 155 (2004), 451-513. · Zbl 1063.35035 · doi:10.1007/s00222-003-0325-4
[17] W. Schlag, Dispersive estimates for Schrödinger operators in dimension two, Comm. Math. Phys., 257 (2005), 87-117. · Zbl 1134.35321 · doi:10.1007/s00220-004-1262-9
[18] W. Schlag, Dispersive estimates for Schrödinger operators: a survey, Mathematical aspects of nonlinear dispersive equations, Ann. of Math. Stud., 163 , Princeton Univ. Press, Princeton, NJ, 2007, pp.,255-285. · Zbl 1143.35001
[19] G. Vodev, Dispersive estimates of solutions to the Schrödinger equation, Ann. Henri Poincaré., 6 (2005), 1179-1196. · Zbl 1084.81031 · doi:10.1007/s00023-005-0237-5
[20] G. Vodev, Dispersive estimates of solutions to the Schrödinger equation in dimensions \(n\geq 4\), Asymptot. Anal., 49 (2006), 61-86. · Zbl 1111.35006
[21] R. Weder, The \(W_{k,p}\)-continuity of the Schrödinger wave operators on the line, Comm. Math. Phys., 208 (1999), 507-520. · Zbl 0945.34070 · doi:10.1007/s002200050767
[22] R. Weder, \(L^p-L^{p'}\) estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrödinger equation with a potential, J. Funct. Anal., 170 (2000), 37-68. · Zbl 0943.34070 · doi:10.1006/jfan.1999.3507
[23] K. Yajima, The \(W_{k,p}\)-continuity of wave operators for Schrödinger operators, J. Math. Soc. Japan., 47 (1995), 551-581. · Zbl 0837.35039 · doi:10.2969/jmsj/04730551
[24] K. Yajima, Dispersive estimates for Schrödinger equations with threshold resonance and eigenvalue, Comm. Math. Phys., 259 (2005), 475-509. · Zbl 1079.81021 · doi:10.1007/s00220-005-1375-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.