×

The Morozov’s principle applied to data assimilation problems. (English) Zbl 1501.35134

Summary: This paper is focused on the Morozov’s principle applied to an abstract data assimilation framework, with particular attention to three simple examples: the data assimilation problem for the Laplace equation, the Cauchy problem for the Laplace equation and the data assimilation problem for the heat equation. Those ill-posed problems are regularized with the help of a mixed type formulation which is proved to be equivalent to a Tikhonov regularization applied to a well-chosen operator. The main issue is that such operator may not have a dense range, which makes it necessary to extend well-known results related to the Morozov’s choice of the regularization parameter to that unusual situation. The solution which satisfies the Morozov’s principle is computed with the help of the duality in optimization, possibly by forcing the solution to satisfy given a priori constraints. Some numerical results in two dimensions are proposed in the case of the data assimilation problem for the Laplace equation.

MSC:

35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35K05 Heat equation
35R25 Ill-posed problems for PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs

Software:

FreeFem++

References:

[1] F. Ben Belgacem, Why is the Cauchy problem severely ill-posed? Inverse Prob. 23 (2007) 823-836. · Zbl 1118.35060 · doi:10.1088/0266-5611/23/2/020
[2] A. Bensoussan, Sur l’identification et le filtrage de systèmes gouvernés par des équations aux dérivées partielles. Cahier/Institut de Recherche d’Informatique et d’Automatique. IRIA (1969). · Zbl 0264.93027
[3] L. Bourgeois, A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace’s equation. Inverse Prob. 21 (2005) 1087-1104. · Zbl 1071.35120 · doi:10.1088/0266-5611/21/3/018
[4] L. Bourgeois, Convergence rates for the quasi-reversibility method to solve the cauchy problem for laplace’s equation. Inverse Prob. 22 (2006) 413-430. · Zbl 1094.35134 · doi:10.1088/0266-5611/22/2/002
[5] L. Bourgeois and L. Chesnel, On quasi-reversibility solutions to the cauchy problem for the laplace equation: regularity and error estimates. ESAIM: M2AN 54 (2020) 493-529. · Zbl 1440.35042 · doi:10.1051/m2an/2019073
[6] L. Bourgeois and J. Dardé, A duality-based method of quasi-reversibility to solve the Cauchy problem in the presence of noisy data. Inverse Prob. 26 (2010) 095016. · Zbl 1200.35315 · doi:10.1088/0266-5611/26/9/095016
[7] L. Bourgeois and J. Dardé, A quasi-reversibility approach to solve the inverse obstacle problem. Inverse Prob. Imaging 4 (2010) 351-377. · Zbl 1200.35318 · doi:10.3934/ipi.2010.4.351
[8] L. Bourgeois and A. Recoquillay, A mixed formulation of the Tikhonov regularization and its application to inverse PDE problems. ESAIM: M2AN 52 (2018) 123-145. · Zbl 1397.35074 · doi:10.1051/m2an/2018008
[9] E. Burman and L. Oksanen, Data assimilation for the heat equation using stabilized finite element methods. Numer. Math. 139 (2018) 505-528. · Zbl 1412.65111
[10] E. Burman, P. Hansbo and M.G. Larson, Solving ill-posed control problems by stabilized finite element methods: an alternative to Tikhonov regularization. Inverse Prob. 34 (2018) 035004. · Zbl 1404.65253 · doi:10.1088/1361-6420/aaa32b
[11] E. Burman, A. Feizmohammadi, A. Münch and L. Oksanen, Space time stabilized finite element methods for a unique continuation problem subject to the wave equation. ESAIM: M2AN 55 (2021) S969-S991. · Zbl 1487.65131 · doi:10.1051/m2an/2020062
[12] F. Caubet and J. Dardé, A dual approach to Kohn-Vogelius regularization applied to data completion problem. Inverse Prob. 36 (2020) 065008. · Zbl 1469.35249 · doi:10.1088/1361-6420/ab7868
[13] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. Vol. 4. Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam-New York-Oxford (1978). · Zbl 0383.65058
[14] N. Cndea and A. Münch, Inverse problems for linear hyperbolic equations using mixed formulations. Inverse Prob. 31 (2015) 075001. · Zbl 1372.35360 · doi:10.1088/0266-5611/31/7/075001
[15] N. Cîndea, A. Imperiale and P. Moireau, Data assimilation of time under-sampled measurements using observers, the wave-like equation example. ESAIM: COCV 21 (2015) 635-669. · Zbl 1405.93045 · doi:10.1051/cocv/2014042
[16] P. Demeestère, A remark on the relation between the tykhonov regularization and constraint relaxation for an optimal control problem. Appl. Math. Lett. 11 (1998) 85-89. · Zbl 0945.49025 · doi:10.1016/S0893-9659(98)00085-8
[17] I. Ekeland and R. Temam, Convex Analysis and Variational Problems. SIAM (1999). · Zbl 0939.49002
[18] S. Ervedoza, Control issues and linear projection constraints on the control and on the controlled trajectory. North-West. Eur. J. Math. 6 (2020) 165-197. · Zbl 1457.93020
[19] F. Hecht, New development in freefem++. J. Numer. Math. 20 (2012) 251-265. · Zbl 1266.68090
[20] A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems. Vol. 120, Springer Nature (2021). · Zbl 1456.35001 · doi:10.1007/978-3-030-63343-1
[21] R. Lattès and J.-L. Lions, Méthode de quasi-réversibilité et applications. Travaux et Recherches Mathématiques, No. 15. Dunod, Paris (1967). · Zbl 0159.20803
[22] K. Law, A. Stuart and K. Zygalakis, Data Assimilation. Vol. 214. Springer (2015). · Zbl 1353.60002 · doi:10.1007/978-3-319-20325-6
[23] G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur Commun. Part. Differ. Equ. 20 (1995) 335-356. · Zbl 0819.35071 · doi:10.1080/03605309508821097
[24] J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués: Contrôlabilité exacte. Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Masson (1988). · Zbl 0653.93002
[25] J.L. Lions, Remarks on approximate controllability. J. d’Analyse Math. 59 (1992) 103-116. · Zbl 0806.35101 · doi:10.1007/BF02790220
[26] A. Osses and J.P. Puel, On the controllability of the laplace equation observed on an interior curve. Rev. Mat. Complut. 11 (1998) 403. · Zbl 0919.35019 · doi:10.5209/rev_REMA.1998.v11.n2.17271
[27] J.P. Zubelli, V. Albani and A. De Cezaro, On the choice of the tikhonov regularization parameter and the discretization level: a discrepancy-based strategy. Inverse Prob. Imaging 10 (2016) 1-25. · Zbl 1334.35416 · doi:10.3934/ipi.2016.10.1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.