×

Existence of normalized solutions for nonlinear fractional Schrödinger equations with trapping potentials. (English) Zbl 1422.35059

Summary: In this paper, we study the existence, nonexistence and mass concentration of \(L^2\)-normalized solutions for nonlinear fractional Schrödinger equations. Comparingwith the Schrödinger equation, we encounter some new challenges due to the nonlocal nature of the fractional Laplacian. We first prove that the optimal embedding constant for the fractional Gagliardo-Nirenberg-Sobolev inequality can be expressed by exact form, which improves the results of [R. L. Frank and E. Lenzmann, Acta Math. 210, No. 2, 261–318 (2013; Zbl 1307.35315); R. L. Frank et al., Commun. Pure Appl. Math. 69, No. 9, 1671–1726 (2016; Zbl 1365.35206)]. By doing this, we then establish the existence and nonexistence of \(L^2\)-normalized solutions for this equation. Finally, under a certain type of trapping potentials, by using some delicate energy estimates we present a detailed analysis of the concentration behavior of \(L^2\)-normalized solutions in the mass critical case.

MSC:

35J61 Semilinear elliptic equations
35R11 Fractional partial differential equations
35A15 Variational methods applied to PDEs
49J40 Variational inequalities
Full Text: DOI

References:

[1] 1X.Cabré and Y.Sire. Nonlinear equations for fractional Laplacians, I: regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. H. Poincaré Anal. Non Linéaire31 (2014), 23-53. · Zbl 1286.35248
[2] 2L.Caffarelli and L.Silvestre. An extension problem related to the fractional Laplacian. Comm. Partial Differ. Equ.32 (2007), 1245-1260. · Zbl 1143.26002
[3] 3X.Chang and Z. Q.Wang. Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian. J. Differ. Equ.256 (2014), 2965-2992. · Zbl 1327.35397
[4] 4G. Y.Chen and Y. Q.Zheng. Concentration phenomenon for fractional nonlinear Schrödinger equations. Commun. Pure Appl. Anal.13 (2014), 2359-2376. · Zbl 1304.35634
[5] 5M.Cheng. Bound state for the fractional Schrödinger equation with unbounded potential. J. Math. Phys.53 (2012), 043507. · Zbl 1275.81030
[6] 6R.Cont and P.Tankov. Financial modelling with jump processes (Boca Raton, FL: Chapman & Hall/CRC Financ. Math. Ser., Chapman & Hall/CRC press, 2004). · Zbl 1052.91043
[7] 7V.Coti Zelati and M.Nolasco. Existence of ground states for nonlinear pseudo relativistic Schrödinger equations. Rend. Lincei Mat. Appl.22 (2011), 51-72. · Zbl 1219.35292
[8] 8M. G.Crandall and P. H.Rabinowitz. Bifurcation, perturbation of simple eigenvalues and linearized stability. Arch. Ration. Mech. Anal.52 (1973), 161-180. · Zbl 0275.47044
[9] 9F.Dalfovo, S.Giorgini, L. P.Pitaevskii and S.Stringari. Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys.71 (1999), 463-512.
[10] 10J.Dávila, M.Del Pino and J.Wei. Concentration phenomenon for fractional nonlinear Schrödinger equations. J. Differ. Equ.256 (2014), 858-892. · Zbl 1322.35162
[11] 11M.del Pino and P.Felmer. Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ.4 (1996), 121-137. · Zbl 0844.35032
[12] 12E.Di Nezza, G.Palatucci and E.Valdinoci. Hitchhiker’s guide to the fractional sobolev spaces. Bull. des Sci. Math.136 (2012), 521-573. · Zbl 1252.46023
[13] 13S.Dipierro, G.Palatucci and E.Valdinoci. Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian. Matematiche68 (2013), 201-216. · Zbl 1287.35023
[14] 14M. M.Fall and E.Valdinoci. Uniqueness and nondegeneracy of positive solutions of (−Δ)^su + u = u^p in ℝ^N when s is close to 1. Commun. Math. Phys.329 (2014), 383-404. · Zbl 1304.35746
[15] 15P.Felmer, A.Quaas and J.Tan. Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian. Proc. Roy. Soc. Edinburgh Sect. A142 (2012), 1237-1262. · Zbl 1290.35308
[16] 16A.Foler and A.Weinstein. Nonspreading wave packets for the cubic Schrödinger equations. J. Funct. Anal.69 (1986), 397-408. · Zbl 0613.35076
[17] 17R.Frank and E.Lenzmann. Uniqueness and nondegeneracy of ground states for (−Δ)^sQ + Q − Q^α + = 0 in ℝ. Acta Math.210 (2013), 261-318. · Zbl 1307.35315
[18] 18R.Frank, E.Lenzmann and L.Silvestre. Uniqueness of radial solutions for the fractional Laplacian. Communications on Pure and Applied Mathematics69 (2016), 1671-1726. · Zbl 1365.35206
[19] 19Y. J.Guo and R.Seiringer. on the mass concentration for Bose-Einstein condensation with attractive interactions. Lett. Math. Phys.104 (2014), 141-156. · Zbl 1311.35241
[20] 20Y. J.Guo, Z. Q.Wang, X. Y.Zeng and H. S.Zhou. Properties for ground states of attractive Gross-Pitaevskii equations with multi-well potentials, e-print arXiv: 1502.01839.
[21] 21Y. J.Guo, X. Y.Zeng and H. S.Zhou. Energy estimates and symmetry breaking in attractive Bose-Einstein condensation with ring-shaped potential. Ann. Inst. H. Poincaré Anal. Non Linéaire33 (2016), 809-828. · Zbl 1341.35053
[22] 22R. K.Jackson and M. I.Weinstein. Geometric analysis of bifurcation and symmetry breaking in a Gross-Pitaevskii equation. J. Stat. Phys.116 (2004), 881-905. · Zbl 1138.81015
[23] 23E. W.Kirr, P. G.Kevrekidis, E.Shlizerman and M. I.Weinstein. Symmetry-breaking bifurcation in the nonlinear Schrödinger/Gross-Pitaevskii equations. SIAM J. Math. Anal.40 (2008), 566-604. · Zbl 1157.35479
[24] 24E. W.Kirr, P. G.Kevrekidis and D. E.Pelinovsky. Symmetry-breaking bifurcation in the nonlinear Schrödinger equation with symmetric potentials. Comm. Math. Phys.308 (2011), 795-844. · Zbl 1235.34128
[25] 25N.Laskin. Fractional quantum mechanics and lévy path integrals. Phys. Lett. A268 (2000), 298-305. · Zbl 0948.81595
[26] 26N.Laskin. Fractional Schrödinger equation. Phys. Rev. E66 (2002), 56-108.
[27] 27E. H.Lieb and M.Loss. Analysis, graduate studies in mathematics,vol. 14, 2nd edn (Providence: American Mathematical Society, 2001).
[28] 28P. L.Lions. The concentration-compactness principle in the calculus of variations. The locally compact case, part I. Ann. Inst. H. Poincaré Anal. Non Linéaire1 (1984), 109-145. · Zbl 0541.49009
[29] 29Y. G.Oh. On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential. Comm. Math. Phys.131 (1990), 223-253. · Zbl 0753.35097
[30] 30L. P.Pitaevskii. Vortex lines in an imperfect Bose gas. Sov. Phys, JETP13 (1961), 451-454.
[31] 31P. H.Rabinowitz. On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys.43 (1992), 270-291. · Zbl 0763.35087
[32] 32S.Secchi. Ground state solutions for nonlinear fractional Schrödinger equations in ℝ^N. J. Math. Phys.54 (2013), 031501. · Zbl 1281.81034
[33] 33S.Secchi. On fractional Schrödinger equations in ℝ^N without the Ambrosetti-Rabinowitz condition, e-print arXiv:1210.0755.
[34] 34R.Servadei and E.Valdinoci. The Brezis-Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc.367 (2015), 67-102. · Zbl 1323.35202
[35] 35X.Shang and J.Zhang. Concentrating solutions of nonlinear fractional Schrödinger equation with potentials. J. Differ. Equ.258 (2015), 1106-1128. · Zbl 1348.35243
[36] 36L.Silvestre. Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm. Pure Appl. Math.60 (2007), 67-112. · Zbl 1141.49035
[37] 37J.Tan. The Brezis-Nirenberg type problem involving the square root of the Laplacian. Calc. Var. Partial Differ. Equ.42 (2011), 21-41. · Zbl 1248.35078
[38] 38X.Wang. On concentration of positive bound states of nonlinear Schrödinger equations. comm. Math. Phys.153 (1993), 229-244. · Zbl 0795.35118
[39] 39M. I.Weinstein. Nonlinear Schrödinger equations and Sharp interpolation estimates. comm. Math. Phys.87 (1983), 567-576. · Zbl 0527.35023
[40] 40M.Willem. Minimax theorems (Boston: Birkhäuser, 1996). · Zbl 0856.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.