×

Min-Max formulae for the speeds of pulsating travelling fronts in periodic excitable media. (English) Zbl 1191.35089

The author is concerned with some nonlinear propagation phenomena for reaction-advection-diffusion equation in the periodic framework. The author deals with travelling wave solution of the equation
\[ u_t=\nabla \cdot (A(z) \nabla u) +q(z)\cdot \nabla u+f(z,u) , \quad t\in \mathbb R,\;z\in \Omega, \]
propagating with speed \(c\). The author considers three types of nonlinearities.
1.
“Combustion” nonlinearity: A nonlinearity \(f=f(x,y,u) \) defined in \(\overline{\Omega }\times\mathbb R\), is called a function “combustion” nonlinearity if:
\[ \begin{aligned} &\begin{cases} f\text{ is globally Lipschitz-continuous in }\overline{\Omega}\times\mathbb R;\\ \forall (x,y) \in \overline{\Omega },\;\forall s\in (-\infty,0] \cup [ 1,+\infty),\;f(s,x,y) =0; \\ \exists \rho \in (0,1),\;\forall (x,y) \in \overline{\Omega },\;\forall 1-\rho \leq s\leq s'\leq 1, f(x,y,s) \geq f(x,y,s');\end{cases}\tag{1}\\ &f\text{ is L-periodic with respect to }x;\tag{2}\\ &\begin{cases} \exists \theta \in (0,1),\;\forall (x,y) \in\overline{\Omega },\;\forall s\in [0,\theta],\;f(x,y,s) =0; \\ \forall s\in (0,1),\;\exists (x,y) \in \overline{\Omega }\text{ such that }f(x,y,s) >0. \end{cases}\tag{3} \end{aligned} \]
In this case of “combustion” nonlinearity, the author proves that the speed \(c\) exists and it is unique, while the front \(u\) is unique up to a translation in \(t.\)
2.
“ZFK” nonlinearity (Zeldovich-Frank-Kamenetskii): If \(f\) satisfies (1) and (2), and instead of (3) we suppose that
\[ \begin{cases}\exists \delta >0, \text{ the restriction of \(f\) to }\overline{\Omega}\times[ 0,1] \text{ is of class }C^{1,\delta }; \\ \forall s\in (0,1),\;\exists (x,y) \in \overline{\Omega}\text{ such that }f(x,y,s) >0,\end{cases} \]
then \(f\) is called “ZFK” nonlinearity.
3.
“KPP” nonlinearity (Kolmogorov-Petrovsky-Piskunov): If \(f\) is a “ZFK” nonlinearity that satisfies
\[ f_u'(x,y,0)=\lim_{u\to 0^+} \frac{f(x,y,u) }u>0 \]
with the additional assumption
\[ \forall (x,y,s) \in \overline{\Omega }\times (0,1),\;0<f(x,y,s) \leq f_u'(x,y,0) \times s, \]
then \(f\) is called “KPP” nonlinearity.
In the case of “ZFK” nonlinearity or “KPP” nonlinearity, the author proves that there exist a minimal speed of propagation \(c^*\). In this situation the author gives a min-max formula for \(c^*\) and apply this formula to prove a variational formula involving eigenvalue problems for the minimal speed \(c^*\) in the “KPP” nonlinearity case.

MSC:

35C07 Traveling wave solutions
35K57 Reaction-diffusion equations
35B10 Periodic solutions to PDEs
35B50 Maximum principles in context of PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
35K58 Semilinear parabolic equations
80A25 Combustion

References:

[1] Berestycki, H.; Hamel, F., Front propagation in periodic excitable media, Comm. Pure Appl. Math., 55, 949-1032 (2002) · Zbl 1024.37054 · doi:10.1002/cpa.3022
[2] Berestycki, H.; Hamel, F.; Nadirashvili, N., The speed of propagation for KPP type problems (periodic framework), J. Eur. Math. Soc., 7, 173-213 (2005) · Zbl 1142.35464 · doi:10.4171/JEMS/26
[3] Berestycki, H.; Hamel, F.; Nadirashvili, N., Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena, Comm. Math. Phys., 253, 451-480 (2005) · Zbl 1123.35033 · doi:10.1007/s00220-004-1201-9
[4] El Smaily, M., Pulsating travelling fronts: asymptotics and homogenization regimes, Eur. J. Appl. Math., 19, 393-434 (2008) · Zbl 1162.35064 · doi:10.1017/S0956792508007511
[5] El Smaily, M., Hamel, F., Roques, L.: Homogenization and influence of fragmentation in a biological invasion model. Discrete Contin. Dyn. Syst. A. (2009, to appear) · Zbl 1179.35047
[6] Hamel, F., Formules min-max pour les vitesses d’ondes progressives multidimensionnelles, Ann. Fac. Sci. Toulouse, 8, 259-280 (1999) · Zbl 0956.35041
[7] Hamel, F., Roques, L.: Uniqueness and stability of monostable pulsating travelling fronts (preprint) · Zbl 1219.35035
[8] Heinze, S.: Large convection limits for KPP fronts (preprint)
[9] Heinze, S.; Papanicolaou, G.; Stevens, A., Variational principles for propagation speeds in inhomogeneous media, SIAM J. Appl. Math., 62, 129-148 (2001) · Zbl 0995.35031 · doi:10.1137/S0036139999361148
[10] Kinezaki, N.; Kawasaki, K.; Takasu, F.; Shigesada, N., Modeling biological invasions into periodically fragmented environments, Theor. Popul. Biol., 64, 291-302 (2003) · Zbl 1102.92057 · doi:10.1016/S0040-5809(03)00091-1
[11] Kolmogorov, A.N., Petrovsky, I.G, Piskunov, N.S.: Étude de l’ équation de la diffusion avec croissance de la quantité de matiére et son application a un probléme biologique, Bulletin Université d’Etat à Moscou (Bjul. Moskowskogo Gos. Univ.), Série internationale, vol. A1, pp. 1-26 (1937) · Zbl 0018.32106
[12] Papanicolaou, G.; Xin, X., Reaction-diffusion fronts in periodically layered media, J. Stat. Phys., 63, 915-931 (1991) · doi:10.1007/BF01029991
[13] Ryzhik, L.; Zlatoš, A., KPP pulsating front speed-up by flows, Comm. Math. Sci., 5, 575-593 (2007) · Zbl 1152.35055
[14] Shigesada, N.; Kawasaki, K., Biological Invasions: Theory and practice, Oxford Series in Ecology and Evolution (1997), Oxford: Oxford University Press, Oxford
[15] Shigesada, N.; Kawasaki, K.; Teramoto, E., Spatial segregation of interacting species, J. Theor. Biol., 79, 83-99 (1979) · doi:10.1016/0022-5193(79)90258-3
[16] Volpert, A.I, Volpert, V.A, Volpert, V.A.: Traveling wave solutions of parabolic systems. Translations of Mathematical Monographs, vol. 140. American Mathematical Society, Providence (1994) · Zbl 0805.35143
[17] Weinberger, H. F., On spreading speeds and traveling waves for growth and migration models in a periodic habitat, J. Math. Biol., 45, 6, 511-548 (2002) · Zbl 1058.92036 · doi:10.1007/s00285-002-0169-3
[18] Xin, J. X., Front propagation in heterogeneous media, SIAM Rev., 42, 161-230 (2000) · Zbl 0951.35060 · doi:10.1137/S0036144599364296
[19] Xin, X., Existence of planar flame fronts in connective-diffusive periodic media, Arch. Ration. Mech. Anal., 121, 205-233 (1992) · Zbl 0764.76074 · doi:10.1007/BF00410613
[20] Zlatoš, A.: Sharp asymptotics for KPP pulsating front speed-up and diffusion enhancement by flows (preprint) · Zbl 1185.35205
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.