×

Impact of awareness to control malaria disease: a mathematical modeling approach. (English) Zbl 1454.92029

Summary: The mathematical modeling of malaria disease has a crucial role in understanding the insights of the transmission dynamics and corresponding appropriate prevention strategies. In this study, a novel nonlinear mathematical model for malaria disease has been proposed. To prevent the disease, we divided the infected population into two groups, unaware and aware infected individuals. The growth rate of awareness programs impacting the population is assumed to be proportional to the unaware infected individuals. It is further assumed that, due to the effect of awareness campaign, the aware infected individuals avoid contact with mosquitoes. The positivity and the boundedness of solutions have been derived through the completing differential process. Local and global stability analysis of disease-free equilibrium has been investigated via basic reproductive number \(R_0\), if \(R_0 < 1\), the system is stable otherwise unstable. The existence of the unique endemic equilibrium has been also determined under certain conditions. The solution to the proposed model is derived through an iterative numerical technique, the Runge-Kutta method. The proposed model is simulated for different numeric values of the population of humans and anopheles in each class. The results show that a significant increase in the population of susceptible humans is achieved in addition to the decrease in the population of the infected mosquitoes.

MSC:

92D30 Epidemiology
92C60 Medical epidemiology

References:

[1] Cai, L.; Tuncer, N.; Martcheva, M., How does within-host dynamics affect population-level dynamics? insights from an immuno-epidemiological model of malaria, Mathematical Methods in the Applied Sciences, 40, 18, 6424-6450 (2017) · Zbl 1383.92078 · doi:10.1002/mma.4466
[2] World Health Organization, World Malaria Report 2019 (2019), Geneva, Switzerland: World Health Organization, Geneva, Switzerland
[3] Lashari, A. A.; Aly, S.; Hattaf, K.; Zaman, G.; Jung, I. H.; Li, X.-Z., Presentation of malaria epidemics using multiple optimal controls, Journal of Applied Mathematics, 2012 (2012) · Zbl 1244.93111 · doi:10.1155/2012/946504
[4] Ross, R., The Prevention of Malaria (1911), London, UK: John Murray.[Google Scholar], London, UK
[5] Ozair, M.; Lashari, A. A.; Jung, I. H.; Seo, Y. I.; Kim, B. N., Stability analysis of a vector-borne disease with variable human population, Abstract and Applied Analysis, 2013 (2013) · Zbl 1271.92033 · doi:10.1155/2013/293293
[6] Anderson, R. M.; May, R. M., Infectious Diseases of Humans: Dynamics and Control (1992), Oxford, UK: Oxford University Press, Oxford, UK
[7] Macdonald, G., The Epidemiology and Control of Malaria (1957), London, UK: Oxford University Press, London, UK
[8] Aron, J. L., Mathematical modeling of immunity to malaria, Mathematical Biosciences, 90, 1-2, 385-396 (1988) · Zbl 0651.92018 · doi:10.1016/0025-5564(88)90076-4
[9] Filipe, J. A. N.; Riley, E. M.; Drakeley, C. J.; Sutherland, C. J.; Ghani, A. C., Determination of the processes driving the acquisition of immunity to malaria using a mathematical transmission model, PLoS Computational Biology, 3, 12, e255 (2007) · doi:10.1371/journal.pcbi.0030255
[10] Hasibeder, G.; Dye, C., Population dynamics of mosquito-borne disease: persistence in a completely heterogeneous environment, Theoretical Population Biology, 33, 1, 31-53 (1988) · Zbl 0647.92015 · doi:10.1016/0040-5809(88)90003-2
[11] RodrÍguez, D.; Torres-Sorando, L., Models of infectious diseases in spatially heterogeneous environments, Bulletin of Mathematical Biology, 63, 3, 547-571 (2001) · Zbl 1323.92210 · doi:10.1006/bulm.2001.0231
[12] Ngwa, G. A.; Shu, W. S., A mathematical model for endemic malaria with variable human and mosquito populations, Mathematical and Computer Modelling, 32, 7-8, 747-764 (2000) · Zbl 0998.92035 · doi:10.1016/s0895-7177(00)00169-2
[13] Cai, L.-M.; Lashari, A. A.; Jung, I. H.; Okosun, K. O.; Seo, Y. I., Mathematical analysis of a malaria model with partial immunity to reinfection, Abstract and Applied Analysis, 2013 (2013) · Zbl 1284.37060 · doi:10.1155/2013/405258
[14] Chitnis, N.; Cushing, J. M.; Hyman, J. M., Bifurcation analysis of a mathematical model for malaria transmission, SIAM Journal on Applied Mathematics, 67, 1, 24-45 (2006) · Zbl 1107.92047 · doi:10.1137/050638941
[15] Diekmann, O.; Heesterbeek, J. A. P.; Metz, J. A., On the definition and the computation of the basic reproduction ratio R_0 in models for infectious diseases in heterogeneous populations, Journal of Mathematical Biology, 28, 4, 365-382 (1990) · Zbl 0726.92018 · doi:10.1007/bf00178324
[16] Ozair, M.; Lashari, A. A.; Jung, I. H.; Okosun, K. O., Stability analysis and optimal control of a vector-borne disease with nonlinear incidence, Discrete Dynamics in Nature and Society, 2012 (2012) · Zbl 1253.93090 · doi:10.1155/2012/595487
[17] Addawe, J. M.; Lope, J. E. C., Analysis of age-structured malaria transmission model, Philippine Science Letters, 5, 2, 169 (2012)
[18] Misra, A.; Sharma, A.; Shukla, J., Modeling and analysis of effects of awareness programs by media on the spread of infectious diseases, Mathematical and Computer Modelling, 53, 5-6, 1221-1228 (2011) · Zbl 1217.34097 · doi:10.1016/j.mcm.2010.12.005
[19] Samanta, S.; Rana, S.; Sharma, A.; Misra, A. K.; Chattopadhyay, J., Effect of awareness programs by media on the epidemic outbreaks: a mathematical model, Applied Mathematics and Computation, 219, 12, 6965-6977 (2013) · Zbl 1316.34052 · doi:10.1016/j.amc.2013.01.009
[20] Greenhalgh, D.; Rana, S.; Samanta, S.; Sardar, T.; Bhattacharya, S.; Chattopadhyay, J., Awareness programs control infectious disease-multiple delay induced mathematical model, Applied Mathematics and Computation, 251, 539-563 (2015) · Zbl 1328.92075 · doi:10.1016/j.amc.2014.11.091
[21] Cai, L.; Li, X.; Tuncer, N.; Martcheva, M.; Lashari, A. A., Optimal control of a malaria model with asymptomatic class and superinfection, Mathematical Biosciences, 288, 94-108 (2017) · Zbl 1377.92082 · doi:10.1016/j.mbs.2017.03.003
[22] Kim, S.; Masud, M. A.; Cho, G.; Jung, I. H., Analysis of a vector-bias effect in the spread of malaria between two different incidence areas, Journal of Theoretical Biology, 419, 66-76 (2017) · Zbl 1370.92163 · doi:10.1016/j.jtbi.2017.02.005
[23] Kim, S.; Byun, J. H.; Park, A.; Jung, I. H., A mathematical model for assessing the effectiveness of controlling relapse in plasmodium vivax malaria endemic in the Republic of Korea, PLoS One, 15, 1 (2020) · doi:10.1371/journal.pone.0227919
[24] Ghosh, M.; Lashari, A. A.; Li, X.-Z., Biological control of malaria: a mathematical model, Applied Mathematics and Computation, 219, 15, 7923-7939 (2013) · Zbl 1288.92021 · doi:10.1016/j.amc.2013.02.053
[25] Olaniyi, S.; Obabiyi, O., Mathematical model for malaria transmission dynamics in human and mosquito populations with nonlinear forces of infection, International Journal of Pure and Applied Mathematics, 88, 1, 125-156 (2013) · Zbl 1277.92025 · doi:10.12732/ijpam.v88i1.10
[26] Van Den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180, 1-2, 29-48 (2002) · Zbl 1015.92036 · doi:10.1016/s0025-5564(02)00108-6
[27] Jung, J. H.; Park, A.; Jung, I. H., Qualitative and sensitivity analysis of the effect of electronic cigarettes on smoking cessation, Computational and Mathematical Methods in Medicine, 2018 (2018) · Zbl 1431.92059 · doi:10.1155/2018/3738584
[28] Kim, K. S.; Ibrahim, M. M.; Jung, I. H.; Kim, S., Mathematical analysis of the effectiveness of control strategies to prevent the autorun virus transmission propagation, Applied Mathematics and Computation, 371 (2020) · Zbl 1433.68048 · doi:10.1016/j.amc.2019.124955
[29] Kuo, B. C.; Golnaraghi, F., Automatic Control Systems (2003), Bergen, NJ, USA: Englewood Cliffs, Bergen, NJ, USA
[30] Blayneh, K.; Cao, Y.; Cao, Y.; Kwon, H.-D., Optimal control of vector-borne diseases: treatment and prevention, Discrete & Continuous Dynamical Systems-B, 11, 3, 587-611 (2009) · Zbl 1162.92034 · doi:10.3934/dcdsb.2009.11.587
[31] Tchuenche, J. M.; Dube, N.; Bhunu, C. P.; Smith, R. J.; Bauch, C. T., The impact of media coverage on the transmission dynamics of human influenza, BMC Public Health, 11, S1, S5 (2011) · doi:10.1186/1471-2458-11-s1-s5
[32] Castillo-Chavez, C.; Feng, Z.; Huang, W., On the computation of R_0 and its role on global stability, Mathematical Approaches for Emerging and Reemerging Infectious Diseases: an Introduction, 1, 229-250 (2002) · Zbl 1021.92032 · doi:10.1007/978-1-4757-3667-0_13
[33] Ngonghala, C. N.; Del Valle, S. Y.; Zhao, R.; Mohammed-Awel, J., Quantifying the impact of decay in bed-net efficacy on malaria transmission, Journal of Theoretical Biology, 363, 247-261 (2014) · Zbl 1309.92075 · doi:10.1016/j.jtbi.2014.08.018
[34] Tumwiine, J.; Mugisha, J. Y. T.; Luboobi, L. S., A mathematical model for the dynamics of malaria in a human host and mosquito vector with temporary immunity, Applied Mathematics and Computation, 189, 2, 1953-1965 (2007) · Zbl 1117.92039 · doi:10.1016/j.amc.2006.12.084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.