×

Spectral collocation and radial basis function methods for one-dimensional interface problems. (English) Zbl 1219.65066

Summary: Differential equations with singular sources or discontinuous coefficients yield non-smooth or even discontinuous solutions. This problem is known as the interface problem. High-order numerical solutions suffer from the Gibbs phenomenon in that the accuracy deteriorates if the discontinuity is not properly treated. In this work, we use the spectral and radial basis function methods and present a least squares collocation method to solve the interface problem for one-dimensional elliptic equations. The domain is decomposed into multiple sub-domains; in each sub-domain, the collocation solution is sought. The solution should satisfy more conditions than the given conditions associated with the differential equations, which makes the problem over-determined. To solve the over-determined system, the least squares method is adopted. For the spectral method, the weighted norm method with different scaling factors and the mixed formulation are used. For the radial basis function method, the weighted shape parameter method is presented. Numerical results show that the least squares collocation method provides an accurate solution with high efficacy and that better accuracy is obtained with the spectral method.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations

Software:

Matlab
Full Text: DOI

References:

[1] Boomkamp, P. A.M.; Boersma, B. J.; Miesen, R. H.M.; Beijnon, G. V., A Chebyshev collocation method for solving two-phase flow stability problems, J. Comput. Phys., 132, 191-200 (1997) · Zbl 0878.76054
[2] Buhmann, M. D., Radial Basis Functions (2003), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1004.65015
[3] Costa, B.; Don, W.-S., On the computation of high-order pseudospectral derivatives, Appl. Numer. Math., 33, 151-159 (2000) · Zbl 0964.65020
[4] Driscoll, T. A.; Heryudono, A. R.H., Adaptive residual subsampling methods for radial basis function interpolation and collocation problems, Comput. Math. Appl., 53, 927-939 (2007) · Zbl 1125.41005
[5] Engquist, B.; Tornberg, A.-K.; Tsai, R., Discretization of Dirac delta function in level set methods, J. Comput. Phys., 207, 28-51 (2005) · Zbl 1074.65025
[6] Fasshauer, G. E., Meshfree Approximation Methods with MATLAB, Interdiscip. Math. Sci., vol. 6 (2007), World Scientific Publishers: World Scientific Publishers Singapore · Zbl 1123.65001
[7] Fei, Z.; Kivshar, Y. S.; Vázquez, L., Resonant kink-impurity interactions in the sine-Gordon model, Phys. Rev. A, 45, 6019-6030 (1992)
[8] Field, S. E.; Hesthaven, J.; Lau, S. R., Discontinuous Galerkin method for computing gravitational waveforms from extreme mass ratio binaries, Class. Quantum Grav., 26, 165010 (2009) · Zbl 1173.83010
[9] Flyer, N.; Wright, G. B., A radial basis function method for the shallow water equations on a sphere, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465, 1949-1976 (2009) · Zbl 1186.76664
[10] Fornberg, B.; Flyer, N., The Gibbs phenomenon for radial basis functions, (Jerri, A., The Gibbs Phenomenon in Various Representations and Applications (2008), Sampling Publishing: Sampling Publishing Potsdam, NY), 201-224
[11] Fornberg, B.; Zuev, J., The Runge phenomenon and spatially variable shape parameters in RBF interpolation, Comput. Math. Appl., 54, 379-398 (2007) · Zbl 1128.41001
[12] Goodman, R.; Haberman, R., Chaotic scattering and the \(n\)-bounce resonance in solitary-wave interactions, Phys. Rev. Lett., 98, 104103-1-104103-4 (2007)
[13] Gottlieb, D.; Shu, C.-W., On the Gibbs phenomena and its resolution, SIAM Rev., 39, 644-668 (1997) · Zbl 0885.42003
[14] Hardy, R. L., Theory and applications of the multiquadric-biharmonic method: 20 years of discovery, Comput. Math. Appl., 19, 8, 163-208 (1990) · Zbl 0692.65003
[15] Heinrichs, W., Least-squares spectral collocation for discontinuous and singular perturbation problems, J. Comput. Appl. Math., 157, 329-345 (2003) · Zbl 1024.65072
[16] Heinrichs, W., Least-squares spectral collocation for the Navier-Stokes equations, J. Sci. Comput., 21, 81-90 (2004) · Zbl 1061.76055
[17] Hesthaven, J.; Gottlieb, S.; Gottlieb, D., Spectral Methods for Time Dependent Problems (2007), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1111.65093
[18] Hon, Y. C.; Kansa, E. J., Circumventing the ill-conditioning problem with multiquadric radial basis functions: Applications to elliptic partial differential equations, Comput. Math. Appl., 39, 123-137 (1998) · Zbl 0955.65086
[19] Huang, Y.; Kouri, D.; Hoffman, D. K., General, energy-separable Faber polynomial representation of operator functions: Theory and application in quantum scattering, J. Chem. Phys., 101, 12, 10493-10506 (1994)
[20] Jacobs, G.; Don, W.-S., A high-order WENO-Z finite difference based particle-source-in-cell method for computation of particle-laden flows with shocks, J. Comput. Phys., 228, 1365-1379 (2008) · Zbl 1409.76113
[21] Jung, J.-H., A note on the Gibbs phenomenon with multiquadric radial basis functions, Appl. Numer. Math., 57, 213-229 (2007) · Zbl 1107.65354
[22] Jung, J.-H., A note on the spectral collocation approximation of some differential equations with singular source terms, J. Sci. Comput., 39, 1, 49-66 (2007) · Zbl 1203.65266
[23] Jung, J.-H.; Khanna, G.; Nagle, I., A spectral collocation approximation of one-dimensional head-on collisions of black holes, Int. J. Mod. Phys. C, 20, 11, 1827-1848 (2009) · Zbl 1181.83122
[24] Jung, J.-H.; Gottlieb, S.; Kim, S. O.; Bresten, C.; Higgs, D., Recovery of high-order accuracy in radial basis function approximation for discontinuous problems, J. Sci. Comput., 45, 1-3, 359-381 (2010) · Zbl 1203.41011
[25] Kansa, E. J., Muliquadrics scattered data approximation scheme with applications to computational fluid dynamics: II. Solutions to parabolic, hyperbolic, and elliptic partial differential equations, Comput. Math. Appl., 19, 147-161 (1990) · Zbl 0850.76048
[26] Kim, S. D.; Shin, B. C., Chebyshev weighted norm least squares spectral methods for the elliptic problem, J. Comput. Math., 24, 451-462 (2006) · Zbl 1103.65120
[27] Kim, S. D.; Lee, H.-C.; Shin, B. C., Pseudo-spectral least-squares method for the second-order elliptic boundary value problem, SIAM J. Numer. Anal., 41, 4, 1370-1387 (2003) · Zbl 1051.65114
[28] Kim, S. D.; Lee, H.-C.; Shin, B. C., Least-squares spectral collocation method for the Stokes equations, Numer. Methods Partial Differential Equations, 20, 128-139 (2004) · Zbl 1040.65098
[29] Kopriva, D. A.; Woodruff, S. L.; Hussaini, M. Y., Computation of electromagnetic scattering with a non-conforming discontinuous spectral element method, Internat. J. Numer. Methods Engrg., 53, 105-122 (2002) · Zbl 0994.78020
[30] LeVeque, R. J.; Li, Z., The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 31, 1019-1044 (1994) · Zbl 0811.65083
[31] Li, Z., The immersed interface method using a finite element formulation, Appl. Numer. Math., 27, 253-267 (1998) · Zbl 0936.65091
[32] Li, Y.-X., Tango waves in a bidomain model of fertilization calcium waves, Physica D, 186, 1, 27-49 (2003) · Zbl 1029.92012
[33] Li, Z., An overview of the immersed interface method and its applications, Taiwanese J. Math., 7, 1-49 (2003) · Zbl 1028.65108
[34] Loubenets, A.; Ali, T.; Hanke, M., Highly accurate finite element method for one-dimensional elliptic interface problems, Appl. Numer. Math., 58, 119-134 (2007) · Zbl 1181.65109
[35] Madych, W. R.; Nelson, S. A., Bounds on multivariate interpolation and exponential error estimates for multiquadric interpolation, J. Approx. Theory, 70, 94-114 (1992) · Zbl 0764.41003
[36] Platte, R. B.; Driscoll, T. A., Polynomials and potential theory for Gaussian radial basis function interpolation, SIAM J. Numer. Anal., 43, 750-766 (2005) · Zbl 1088.65009
[37] Sarra, S. A., Adaptive radial basis function methods for time dependent partial differential equations, Appl. Numer. Math., 54, 79-94 (2005) · Zbl 1069.65109
[38] Sarra, S. A., A numerical study of the accuracy and stability of symmetric and asymmetric RBF collocation methods for hyperbolic PDEs, Numer. Methods Partial Differential Equations, 24, 670-686 (2008) · Zbl 1135.65386
[39] Shaback, R., Error estimates and condition numbers for radial basis function interpolation, Adv. Comput. Math., 3, 251-264 (1995) · Zbl 0861.65007
[40] Tornberg, A.-K.; Engquist, B., Numerical approximations of singular source terms in differential equations, J. Comput. Phys., 200, 462-488 (2004) · Zbl 1115.76392
[41] Waldén, J., On the approximation of singular source terms in differential equations, Numer. Methods Partial Differential Equations, 15, 503-520 (1999) · Zbl 0938.65112
[42] Wang, J. G.; Liu, G. R., On the optimal shape parameters of radial basis functions used for 2-D meshless methods, Comput. Methods Appl. Mech. Engrg., 191, 2611-2630 (2002) · Zbl 1065.74074
[43] Wendland, H., Scattered Data Approximation (2005), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1075.65021
[44] Wright, G. B.; Flyer, N.; Yuen, D. A., A hybrid radial basis function - pseudospectral method for thermal convection in a 3D spherical shell, Geochem. Geophys. Geosyst., 11, Q07003 (2010)
[45] Yoon, J., Spectral approximation orders of radial basis function interpolation on the Sobolev space, SIAM J. Math. Anal., 33, 4, 946-958 (2001) · Zbl 0996.41002
[46] Zerilli, F. J., Effective potential for even-parity Regge-Wheeler gravitational perturbation equations, Phys. Rev. Lett., 24, 737-738 (1970)
[47] Zhou, X.; Hon, Y. C.; Li, J., Overlapping domain decomposition method by radial basis functions, Appl. Numer. Math., 44, 241-255 (2003) · Zbl 1013.65134
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.