×

Error analysis of finite element approximations of the optimal control problem for stochastic Stokes equations with additive white noise. (English) Zbl 1397.65255

Summary: Finite element approximation solutions of the optimal control problems for stochastic Stokes equations with the forcing term perturbed by white noise are considered. To obtain the most efficient deterministic optimal control, we set up the cost functional as we proposed in [H.-C. Lee and M. D. Gunzburger, Comput. Math. Appl. 73, No. 8, 1657–1672 (2017; Zbl 1370.49032)]. Error estimates are established for the fully coupled optimality system using Green’s functions and Brezzi-Rappaz-Raviart theory. Numerical examples are also presented to examine our theoretical results.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35R60 PDEs with randomness, stochastic partial differential equations
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35Q93 PDEs in connection with control and optimization
35Q30 Navier-Stokes equations
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
76D07 Stokes and related (Oseen, etc.) flows

Citations:

Zbl 1370.49032

Software:

NAPACK; FreeFem++
Full Text: DOI

References:

[1] Abergal, F.; Temmam, R., On some control problems in fluid mechanics, Theor. Comput. Fluid Dyn., 1, 303-325, (1990) · Zbl 0708.76106
[2] Babuska, I.; Chatzipantelidis, P., On solving elliptic stochastic partial differential equations, Comput. Methods Appl. Mech. Eng., (2002) · Zbl 1019.65010
[3] Babuska, I.; Tempone, R.; Zouraris, G. E., Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal., 42, 2, 800-825, (2004) · Zbl 1080.65003
[4] Babuska, I.; Tempone, R.; Zouraris, G. E., Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation, Comput. Methods Appl. Mech. Eng., 194, 1251-1294, (2005) · Zbl 1087.65004
[5] Brezzi, F.; Rappaz, J.; Raviart, P., Finite-dimensional approximation of nonlinear problems. part 1: branches of nonsingular solutions, Numer. Math., 36, 1-25, (1980) · Zbl 0488.65021
[6] Cao, Y.; Chen, Z.; Gunzburger, M. D., Error analysis of finite element approximations of the stochastic Stokes equations, Adv. Comput. Math., 1-16, (2010)
[7] Cao, Y.; Yang, H.; Yin, L., Finite element methods for semilinear elliptic stochastic partial differential equations, Numer. Math., 106, 2, 181-198, (Feb. 2007) · Zbl 1121.65008
[8] Chen, P.; Quarteroni, A.; Rozza, G., Multilevel and weighted reduced basis method for stochastic optimal control problems constrained by Stokes equations, Numer. Math., 67-102, (2016) · Zbl 1344.93109
[9] Choi, Y.; Lee, H.-C.; Kim, S. D., Analysis and computations of least-squares method for optimal control problems for the Stokes equations, J. Korean Math. Soc., 46, 5, (2009) · Zbl 1178.65068
[10] Choi, Y.; Lee, H.-C.; Shin, B.-C., A least-square/penalty method for distributed optimal control problems for Stokes equations, Comput. Math. Appl., 53, 11, 1672-1685, (2007) · Zbl 1152.49319
[11] Ghanem, R. G.; Spanos, P. D., Stochastic finite elements: A spectral approach, (1991), Springer-Verlag · Zbl 0722.73080
[12] Girault, V.; Raviart, P., Finite element methods for Navier-Stokes equations, (1986), Springer Berlin · Zbl 0585.65077
[13] Girault, V.; Raviart, P.-A., Finite element methods for Navier-Stokes equations, (1986), Springer Berlin · Zbl 0585.65077
[14] Gunzburger, M. D.; Hou, L. S., Finite-dimensional approximation of a class of constrained nonlinear optimal control problems, SIAM J. Control Optim., 34, 3, 1001-1043, (1996) · Zbl 0849.49005
[15] Gunzburger, M.; Manservisi, S., Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed control, SIAM J. Numer. Anal., 37, 5, 1481-1512, (2000) · Zbl 0963.35150
[16] Hager, W., Applied numerical linear algebra, (1988), Prentice Hall New Jersey · Zbl 0665.65021
[17] Hecht, F., New development in freefem++, J. Numer. Math., 20, 3-4, 251-265, (2012) · Zbl 1266.68090
[18] Hou, L.; Lee, J.; Manouzi, H., Finite element approximations of stochastic optimal control problems constrained by stochastic elliptic pdes, J. Math. Anal. Appl., 384, 87-103, (2011) · Zbl 1227.65011
[19] Ladyzhenskaya, O., The mathematical theory of viscous incompressible flows, (1969), Gordon and Breach New York · Zbl 0184.52603
[20] Lee, H.-C.; Gunzburger, M., Comparison of approaches for random PDE optimization problems based on different matching functionals, Comput. Math. Appl., 73, 8, 1657-1672, (2017) · Zbl 1370.49032
[21] Lions, J. L., Optimal control of systems governed by partial differential equations, (1971), Springer New York · Zbl 0203.09001
[22] Manouzi, H., A finite element approximation of linear stochastic PDEs driven by multiplicative white noise, Int. J. Comput. Math., 85, 3-4, 527-546, (2008) · Zbl 1139.65006
[23] Stefanou, G., The stochastic finite element method: past, present, and future, Comput. Methods Appl. Mech. Eng., 198, 9-12, 1031-1051, (2009) · Zbl 1229.74140
[24] Témam, R., Nonlinear functional analysis and Navier-Stokes equations, (1983), SIAM Philadelphia · Zbl 0522.35002
[25] Walsh, J., Introduction to stochastic partial differential equations, Lecture Notes in Mathematics, vol. 1180, 265-439, (1986), Springer New York · Zbl 0608.60060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.