×

A very brief introduction to nonnegative tensors from the geometric viewpoint. (English) Zbl 1405.15033

Summary: This note is a short survey of nonnegative tensors, primarily from the geometric point of view. In addition to basic definitions, we discuss properties of and questions about nonnegative tensors, which may be of interest to geometers.

MSC:

15A69 Multilinear algebra, tensor calculus
53A45 Differential geometric aspects in vector and tensor analysis

Software:

BCLS

References:

[1] Bocci, C.; Chiantini, L.; Ottaviani, G.; Refined methods for the identifiability of tensors; Ann. Mat. Pura Appl.: 2014; Volume 193 ,1691-1702. · Zbl 1314.14102
[2] Chiantini, L.; Ottaviani, G.; Vannieuwenhoven, N.; On generic identifiability of symmetric tensors of subgeneric rank; Trans. Am. Math. Soc.: 2017; Volume 369 ,4021-4042. · Zbl 1360.14021
[3] Comon, P.; Golub, G.; Lim, L.H.; Mourrain, B.; Symmetric tensors and symmetric tensor rank; SIAM J. Matrix Anal. Appl.: 2008; Volume 30 ,1254-1279. · Zbl 1181.15014
[4] Brachat, J.; Comon, P.; Mourrain, B.; Tsigaridas, E.; Symmetric tensor decomposition; Linear Algebra Appl.: 2010; Volume 433 ,1851-1872. · Zbl 1206.65141
[5] Lim, L.H.; Comon, P.; Nonnegative approximations of nonnegative tensors; J. Chemom.: 2009; Volume 23 ,432-441.
[6] Shashua, A.; Hazan, T.; Non-negative tensor factorization with applications to statistics and computer vision; Proceedings of the 22nd International Conference on Machine Learning: ; ,792-799.
[7] Smilde, A.; Bro, R.; Geladi, P.; ; Multi-Way Analysis: Chichester, UK 2004; .
[8] Zhang, Q.; Wang, H.; Plemmons, R.J.; Pauca, V.P.; Tensor methods for hyperspectral data analysis: A space object material identification study; J. Opt. Soc. Am. A: 2008; Volume 25 ,3001-3012.
[9] Garcia, L.D.; Stillman, M.; Sturmfels, B.; Algebraic geometry of Bayesian networks; J. Symb. Comput.: 2005; Volume 39 ,331-355. · Zbl 1126.68102
[10] Jordan, M.I.; Graphical models; Stat. Sci.: 2004; Volume 19 ,140-155. · Zbl 1057.62001
[11] Koller, D.; Friedman, N.; ; Probabilistic Graphical Models: Principles and techniques: Cambridge, MA, USA 2009; ,xxxvi+1231. · Zbl 1183.68483
[12] Zhou, J.; Bhattacharya, A.; Herring, A.H.; Dunson, D.B.; Bayesian factorizations of big sparse tensors; J. Am. Stat. Assoc.: 2015; Volume 110 ,1562-1576. · Zbl 1373.62282
[13] Shashua, A.; Zass, R.; Hazan, T.; Multi-way Clustering Using Super-Symmetric Non-negative Tensor Factorization; Computer Vision—ECCV 2006: Berlin/Heidelberg, Germany 2006; ,595-608.
[14] Veganzones, M.; Cohen, J.; Farias, R.; Chanussot, J.; Comon, P.; Nonnegative tensor CP decomposition of hyperspectral data; IEEE Trans. Geosci. Remote Sens.: 2016; Volume 54 ,2577-2588.
[15] Bartoň, M.; Calo, V.M.; Optimal quadrature rules for odd-degree spline spaces and their application to tensor-product-based isogeometric analysis; Comput. Methods Appl. Mech. Energy: 2016; Volume 305 ,217-240. · Zbl 1425.65039
[16] Mantzaflaris, A.; Jüttler, B.; Khoromskij, B.N.; Langer, U.; Low rank tensor methods in Galerkin-based isogeometric analysis; Comput. Methods Appl. Mech. Energy: 2017; Volume 316 ,1062-1085. · Zbl 1439.65185
[17] Scholz, F.; Mantzaflaris, A.; Jüttler, B.; Partial tensor decomposition for decoupling isogeometric Galerkin discretizations; Comput. Methods Appl. Mech. Energy: 2018; Volume 336 ,485-506. · Zbl 1440.65231
[18] Lee, D.D.; Seung, H.S.; Algorithms for non-negative matrix factorization; Adv. Neural Inf. Process. Syst.: 2001; ,556-562.
[19] Chu, M.T.; Lin, M.M.; Low-dimensional polytope approximation and its applications to nonnegative matrix factorization; SIAM J. Sci. Comput.: 2008; Volume 30 ,1131-1155. · Zbl 1168.65019
[20] Kim, H.; Park, H.; Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method; SIAM J. Matrix Anal. Appl.: 2008; Volume 30 ,713-730. · Zbl 1162.65354
[21] Kim, J.; Park, H.; Fast nonnegative matrix factorization: an active-set-like method and comparisons; SIAM J. Sci. Comput.: 2011; Volume 33 ,3261-3281. · Zbl 1232.65068
[22] Ho, N.D.; Nonnegative Matrix Factorization Algorithms and Applications; Ph.D. Thesis: Ottignies-Louvain-la-Neuve, Belgium 2008; .
[23] Zhou, G.; Cichocki, A.; Xie, S.; Fast nonnegative matrix/tensor factorization based on low-rank approximation; IEEE Trans. Signal Process.: 2012; Volume 60 ,2928-2940. · Zbl 1391.65117
[24] Vavasis, S.A.; On the complexity of nonnegative matrix factorization; SIAM J. Optim.: 2009; Volume 20 ,1364-1377. · Zbl 1206.65130
[25] Arora, S.; Ge, R.; Kannan, R.; Moitra, A.; Computing a nonnegative matrix factorization—provably; STOC’12—Proceedings of the 2012 ACM Symposium on Theory of Computing: New York, NY, USA 2012; ,145-161. · Zbl 1286.15014
[26] Bro, R.; Multi-Way Analysis in the Food Industry: Models, Algorithms, and Applications; Ph.D. Thesis: Amsterdam, The Netherlands 1998; .
[27] Friedlander, M.P.; Hatz, K.; Computing non-negative tensor factorizations; Optim. Methods Softw.: 2008; Volume 23 ,631-647. · Zbl 1158.65321
[28] Cohen, J.; Farias, R.C.; Comon, P.; Fast Decomposition of Large Nonnegative Tensors; IEEE Signal Process. Lett.: 2015; Volume 22 ,862-866.
[29] Cichocki, A.; Zdunek, R.; Phan, A.H.; Amari, S.I.; ; Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation: Hoboken, NJ, USA 2009; .
[30] Kim, J.; He, Y.; Park, H.; Algorithms for nonnegative matrix and tensor factorizations: A unified view based on block coordinate descent framework; J. Glob. Optim.: 2014; Volume 58 ,285-319. · Zbl 1321.90129
[31] Zhou, G.; Cichocki, A.; Zhao, Q.; Xie, S.; Nonnegative matrix and tensor factorizations: An algorithmic perspective; IEEE Signal Process. Mag.: 2014; Volume 31 ,54-65.
[32] Strassen, V.; Rank and optimal computation of generic tensors; Linear Algebra Appl.: 1983; Volume 52 ,645-685. · Zbl 0514.15018
[33] Lickteig, T.; Typical tensorial rank; Linear Algebra Appl.: 1985; Volume 69 ,95-120. · Zbl 0575.15013
[34] Abo, H.; Ottaviani, G.; Peterson, C.; Induction for secant varieties of Segre varieties; Trans. Am. Math. Soc.: 2009; Volume 361 ,767-792. · Zbl 1170.14036
[35] Kruskal, J.B.; Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics; Linear Algebra Appl.: 1977; Volume 18 ,95-138. · Zbl 0364.15021
[36] Stegeman, A.; On uniqueness conditions for Candecomp/Parafac and Indscal with full column rank in one mode; Linear Algebra Appl.: 2009; Volume 431 ,211-227. · Zbl 1162.62057
[37] Chiantini, L.; Ottaviani, G.; On generic identifiability of 3-tensors of small rank; SIAM J. Matrix Anal. Appl.: 2012; Volume 33 ,1018-1037. · Zbl 1263.14053
[38] Domanov, I.; De Lathauwer, L.; On the uniqueness of the canonical polyadic decomposition of third-order tensors—Part I: Basic results and uniqueness of one factor matrix; SIAM J. Matrix Anal. Appl.: 2013; Volume 34 ,855-875. · Zbl 1282.15019
[39] Domanov, I.; De Lathauwer, L.; On the uniqueness of the canonical polyadic decomposition of third-order tensors—Part II: Uniqueness of the overall decomposition; SIAM J. Matrix Anal. Appl.: 2013; Volume 34 ,876-903. · Zbl 1282.15020
[40] Chiantini, L.; Ottaviani, G.; Vannieuwenhoven, N.; An algorithm for generic and low-rank specific identifiability of complex tensors; SIAM J. Matrix Anal. Appl.: 2014; Volume 35 ,1265-1287. · Zbl 1322.14022
[41] Domanov, I.; De Lathauwer, L.; Generic uniqueness conditions for the canonical polyadic decomposition and INDSCAL; SIAM J. Matrix Anal. Appl.: 2015; Volume 36 ,1567-1589. · Zbl 1330.15028
[42] Qi, Y.; Comon, P.; Lim, L.H.; Semialgebraic geometry of nonnegative tensor rank; SIAM J. Matrix Anal. Appl.: 2016; Volume 37 ,1556-1580. · Zbl 1349.14183
[43] Alexander, J.; Hirschowitz, A.; Polynomial interpolation in several variables; J. Algebr. Geom.: 1995; Volume 4 ,201-222. · Zbl 0829.14002
[44] Chiantini, L.; Ciliberto, C.; On the concept of k-secant order of a variety; J. Lond. Math. Soc.: 2006; Volume 73 ,436-454. · Zbl 1101.14067
[45] Ballico, E.; On the weak non-defectivity of Veronese embeddings of projective spaces; Cent. Eur. J. Math.: 2005; Volume 3 ,183-187. · Zbl 1106.14040
[46] Mella, M.; Singularities of linear systems and the Waring problem; Trans. Am. Math. Soc.: 2006; Volume 358 ,5523-5538. · Zbl 1112.14062
[47] Landsberg, J.M.; ; Tensors: Geometry and Applications: Providence, RI, USA 2012; Volume Volume 128 ,xx+439. · Zbl 1238.15013
[48] Qi, Y.; Comon, P.; Lim, L.H.; Uniqueness of nonnegative tensor approximations; IEEE Trans. Inform. Theory: 2016; Volume 62 ,2170-2183. · Zbl 1359.94155
[49] Friedland, S.; Ottaviani, G.; The number of singular vector tuples and uniqueness of best rank-one approximation of tensors; Found. Comput. Math.: 2014; Volume 14 ,1209-1242. · Zbl 1326.15036
[50] Draisma, J.; Horobeţ, E.; Ottaviani, G.; Sturmfels, B.; Thomas, R.R.; The Euclidean distance degree of an algebraic variety; Found. Comput. Math.: 2016; Volume 16 ,99-149. · Zbl 1370.51020
[51] Draisma, J.; Horobeţ, E.; The average number of critical rank-one approximations to a tensor; Linear Multilinear Algebra: 2016; Volume 64 ,2498-2518. · Zbl 1358.15015
[52] Berman, A.; Plemmons, R.J.; ; Nonnegative Matrices in the Mathematical Sciences: Philadelphia, PA, USA 1994; Volume Volume 9 ,xx+340. · Zbl 0815.15016
[53] Chang, K.C.; Pearson, K.; Zhang, T.; Perron-Frobenius theorem for nonnegative tensors; Commun. Math. Sci.: 2008; Volume 6 ,507-520. · Zbl 1147.15006
[54] Friedland, S.; Gaubert, S.; Han, L.; Perron-Frobenius theorem for nonnegative multilinear forms and extensions; Linear Algebra Appl.: 2013; Volume 438 ,738-749. · Zbl 1261.15039
[55] Lim, L.H.; Singular Values and Eigenvalues of tensors: A Variational Approach; Proceedings of the 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing: ; ,129-132.
[56] Yang, Y.; Yang, Q.; Further results for Perron-Frobenius theorem for nonnegative tensors; SIAM J. Matrix Anal. Appl.: 2010; Volume 31 ,2517-2530. · Zbl 1227.15014
[57] Hillar, C.J.; Lim, L.H.; Most tensor problems are NP-hard; J. ACM: 2013; Volume 60 . · Zbl 1281.68126
[58] Stegeman, A.; Comon, P.; Subtracting a best rank-1 approximation may increase tensor rank; Linear Algebra Appl.: 2010; Volume 433 ,1276-1300. · Zbl 1198.15018
[59] Vannieuwenhoven, N.; Nicaise, J.; Vandebril, R.; Meerbergen, K.; On generic nonexistence of the Schmidt-Eckart-Young decomposition for complex tensors; SIAM J. Matrix Anal. Appl.: 2014; Volume 35 ,886-903. · Zbl 1311.15027
[60] Chang, K.; Qi, L.; Zhang, T.; A survey on the spectral theory of nonnegative tensors; Numer. Linear Algebra Appl.: 2013; Volume 20 ,891-912. · Zbl 1313.15015
[61] Qi, L.; Eigenvalues of a real supersymmetric tensor; J. Symb. Comput.: 2005; Volume 40 ,1302-1324. · Zbl 1125.15014
[62] Banach, S.; Über homogene Polynome in (L2); Stud. Math.: 1938; Volume 7 ,36-44. · Zbl 0018.21902
[63] Friedland, S.; Best rank one approximation of real symmetric tensors can be chosen symmetric; Front. Math. China: 2013; Volume 8 ,19-40. · Zbl 1264.15026
[64] Breiding, P.; The expected number of eigenvalues of a real Gaussian tensor; SIAM J. Appl. Algebra Geom.: 2017; Volume 1 ,254-271. · Zbl 1365.65092
[65] Cartwright, D.; Sturmfels, B.; The number of eigenvalues of a tensor; Linear Algebra Appl.: 2013; Volume 438 ,942-952. · Zbl 1277.15007
[66] Oeding, L.; Ottaviani, G.; Eigenvectors of tensors and algorithms for Waring decomposition; J. Symb. Comput.: 2013; Volume 54 ,9-35. · Zbl 1277.15019
[67] Breiding, P.; The average number of critical rank-one-approximations to a symmetric tensor; arXiv: 2017; . · Zbl 1365.65092
[68] Gel’fand, I.M.; Kapranov, M.M.; Zelevinsky, A.V.; ; Discriminants, Resultants, and Multidimensional Determinants: Boston, MA, USA 1994; ,x+523. · Zbl 0827.14036
[69] Cox, D.A.; Little, J.; O’Shea, D.; ; Using Algebraic Geometry: New York, NY, USA 2005; Volume Volume 185 ,xii+572. · Zbl 1079.13017
[70] Qi, L.; Eigenvalues and invariants of tensors; J. Math. Anal. Appl.: 2007; Volume 325 ,1363-1377. · Zbl 1113.15020
[71] Li, A.M.; Qi, L.; Zhang, B.; E-characteristic polynomials of tensors; Commun. Math. Sci.: 2013; Volume 11 ,33-53. · Zbl 1282.15023
[72] Friedland, S.; Stawiska, M.G.; Some approximation problems in semi-algebraic geometry; Constr. Approx. Funct.: 2015; Volume 107 ,133-147. · Zbl 1338.14055
[73] Kubjas, K.; Robeva, E.; Sturmfels, B.; Fixed points EM algorithm and nonnegative rank boundaries; Ann. Stat.: 2015; Volume 43 ,422-461. · Zbl 1308.62035
[74] Pachter, L.; Sturmfels, B.; ; Algebraic Statistics for Computational Biology: New York, NY, USA 2005; . · Zbl 1108.62118
[75] Allman, E.S.; Rhodes, J.A.; Sturmfels, B.; Zwiernik, P.; Tensors of nonnegative rank two; Linear Algebra Appl.: 2015; Volume 473 ,37-53. · Zbl 1312.15033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.