×

Optimal Runge-Kutta schemes for discontinuous Galerkin space discretizations applied to wave propagation problems. (English) Zbl 1242.65190

Summary: We study the performance of methods of lines combining discontinuous Galerkin spatial discretizations and explicit Runge-Kutta time integrators, with the aim of deriving optimal Runge-Kutta schemes for wave propagation applications. We review relevant Runge-Kutta methods from literature, and consider schemes of order \(q\) from 3 to 4, and number of stages up to \(q + 4\), for optimization. From a user point of view, the problem of the computational efficiency involves the choice of the best combination of mesh and numerical method; two scenarios are defined.
In the first one, the element size is totally free, and a 8-stage, fourth-order Runge-Kutta scheme is found to minimize a cost measure depending on both accuracy and stability. In the second one, the elements are assumed to be constrained to such a small size by geometrical features of the computational domain, that accuracy is disregarded. We then derive one 7-stage, third-order scheme and one 8-stage, fourth-order scheme that maximize the stability limit. The performance of the three new schemes is thoroughly analyzed, and the benefits are illustrated with two examples. For each of these Runge-Kutta methods, we provide the coefficients for a \(2N\)-storage implementation, along with the information needed by the user to employ them optimally.

MSC:

65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
35L05 Wave equation
65Y20 Complexity and performance of numerical algorithms
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

Software:

Octave
Full Text: DOI

References:

[1] Colonius, T.; Lele, S. K., Computational aeroacoustics: progress on nonlinear problems of sound generation, Prog. Aerosp. Sci., 40, 345-416 (2004)
[2] Cockburn, B.; Shu, C.-W., Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16, 173-261 (2001) · Zbl 1065.76135
[3] Hesthaven, J. S.; Warburton, T., Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, Texts in Applied Mathematics, vol. 54 (2008), Springer-Verlag: Springer-Verlag New York, USA · Zbl 1134.65068
[4] Williamson, J. H., Low-storage Runge-Kutta schemes, J. Comput. Phys., 35, 48-56 (1980) · Zbl 0425.65038
[5] Calvo, M.; Franco, J. M.; Rández, L., Minimum storage Runge-Kutta schemes for computational acoustics, Comput. Math. Appl., 45, 535-545 (2003) · Zbl 1036.65059
[6] M.H. Carpenter, C.A. Kennedy, Fourth-Order \(2N\); M.H. Carpenter, C.A. Kennedy, Fourth-Order \(2N\)
[7] Mead, J. L.; Renaut, R. A., Optimal Runge-Kutta methods for first order pseudospectral operators, J. Comput. Phys., 152, 404-419 (1999) · Zbl 0935.65100
[8] Allampalli, V.; Hixon, R.; Nallasamy, M.; Sawyer, S. D., High-accuracy large-step explicit Runge-Kutta (HALE-RK) schemes for computational aeroacoustics, J. Comput. Phys., 228, 3837-3850 (2009) · Zbl 1171.76039
[9] Hu, F. Q.; Hussaini, M. Y.; Manthey, J. L., Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics, J. Comput. Phys., 124, 177-191 (1996) · Zbl 0849.76046
[10] Stanescu, D.; Habashi, W. G., \(2N\)-storage low dissipation and dispersion Runge-Kutta schemes for computational acoustics, J. Comput. Phys., 143, 674-681 (1998) · Zbl 0952.76063
[11] Berland, J.; Bogey, C.; Bailly, C., Low-dissipation and low-dispersion fourth-order Runge-Kutta algorithm, Comput. Fluids, 35, 1459-1463 (2006) · Zbl 1177.76252
[12] Calvo, M.; Franco, J. M.; Rández, L., A new minimum storage Runge-Kutta scheme for computational acoustics, J. Comput. Phys., 201, 1-12 (2004) · Zbl 1059.65061
[13] Tselios, K.; Simos, T., Optimized Runge-Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics, Phys. Lett. A, 363, 38-47 (2007) · Zbl 1197.76082
[14] Pirozzoli, S., Performance analysis and optimization of finite-difference schemes for wave propagation problems, J. Comput. Phys., 222, 809-831 (2007) · Zbl 1158.76382
[15] Bernardini, M.; Pirozzoli, S., A general strategy for the optimization of Runge-Kutta schemes for wave propagation phenomena, J. Comput. Phys., 228, 4182-4199 (2009) · Zbl 1273.76294
[16] Toulorge, T.; Desmet, W., CFL conditions for Runge-Kutta discontinuous Galerkin methods on triangular grids, J. Comput. Phys., 230, 4657-4678 (2011) · Zbl 1220.65139
[17] Butcher, J. C., The Numerical Analysis of Ordinary Differential Equations (2003), John Wiley & Sons, Ltd.: John Wiley & Sons, Ltd. Chichester, England · Zbl 1032.65512
[18] Baldauf, M., Stability analysis for linear discretisations of the advection equation with Runge-Kutta time integration, J. Comput. Phys., 227, 6638-6659 (2008) · Zbl 1149.65064
[19] Ramboer, J.; Broeckhoven, T.; Smirnov, S.; Lacor, C., Optimization of time integration schemes coupled to spatial discretization for use in caa applications, J. Comput. Phys., 213, 777-802 (2006) · Zbl 1136.76391
[20] Gottlieb, S.; Shu, C.-W.; Tadmor, E., Strong stability-preserving high-order time discretization methods, SIAM Rev., 43, 89-112 (2001) · Zbl 0967.65098
[21] Ruuth, S. J., Global optimization of explicit strong-stability-preserving Runge-Kutta methods, Math. Comput., 75, 183-207 (2006) · Zbl 1080.65088
[22] Jameson, A., Solution of the Euler equations for two dimensional transonic flow by a multigrid method, Appl. Math. Comput., 13, 327-355 (1983) · Zbl 0545.76065
[23] Denia, F. D.; Albelda, J.; Fuenmayor, F. J.; Torregrosa, A. J., Acoustic behaviour of elliptical chamber mufflers, J. Sound Vib., 241, 401-421 (2001)
[24] Hong, K.; Kim, J., Natural mode analysis of hollow and annular elliptical cylindrical cavities, J. Sound Vib., 183, 327-351 (1995) · Zbl 0982.76550
[25] Toulorge, T.; Desmet, W., Curved boundary treatments for the discontinuous Galerkin method applied to aeroacoustic propagation, AIAA J., 48, 479-489 (2010)
[26] J.W. Eaton, D. Bateman, S. Hauberg, GNU Octave Manual Version 3, Network Theory Limited, Bristol, GB, 2008.; J.W. Eaton, D. Bateman, S. Hauberg, GNU Octave Manual Version 3, Network Theory Limited, Bristol, GB, 2008.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.