×

A general acoustic energy-spectral method for axisymmetric cavity with arbitrary curvature edges. (English) Zbl 1524.76427

MSC:

76Q05 Hydro- and aero-acoustics
76M22 Spectral methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] Xie, X.; Yang, H. S.; Zheng, H., A weak formulation for interior acoustic analysis of enclosures with inclined walls and impedance boundary, Wave Motion, 65, 175-186 (2016) · Zbl 1467.76063
[2] Chen, Y. H.; Jin, G. Y.; Liu, Z. G., A domain decomposition method for analyzing a coupling between multiple acoustical spaces (L), J. Acoust. Soc. Am., 141, 3018-3021 (2017)
[3] Shi, S. X.; Jin, G. Y.; Xiao, B.; Liu, Z. G., Acoustic modeling and eigenanalysis of coupled rooms with a transparent coupling aperture of variable size, J. Sound Vib., 419, 352-366 (2018)
[4] Shi, D. Y.; Liu, G.; Zhang, H.; Ren, W. H.; Wang, Q. S., A three-dimensional modeling method for the trapezoidal cavity and multi-coupled cavity with various impedance boundary conditions, Appl. Acoust., 154, 213-225 (2019)
[5] Zhang, H.; Zhu, R. P.; Shi, D. Y.; Wang, Q. S., A unified modeling method for the rotary enclosed acoustic cavity, Appl. Acoust., 163, Article 107230 pp. (2020)
[6] Shi, S. X.; Guo, T.; Xiao, B.; Jin, G. Y.; Gao, C., Modelling and analysis of vibro-acoustic coupled spaces with a mixed interface, Mech. Syst. Signal Proc., 158, Article 107788 pp. (2021)
[7] Xiao, Y. J.; Shao, D.; Zhang, H.; Shuai, C. J.; Wang, Q. S., An acoustic modeling of the three-dimensional annular segment cavity with various impedance boundary conditions, Results Phys., 10, 411-423 (2018)
[8] Levine, H., Acoustical cavity excitation, J. Acoust. Soc. Am., 109, 2555-2565 (2001)
[9] Meissner, M., Simulation of acoustical properties of coupled rooms using numerical technique based on modal expansion, Acta Phys. Polon. A, 118, 123-127 (2010)
[10] Meissner, M., Acoustic energy density distribution and sound intensity vector field inside coupled spaces, J. Acoust. Soc. Am., 132, 228-238 (2012)
[11] Jin, G.; Shi, S.; Liu, Z., Acoustic modeling of a three-dimensional rectangular opened enclosure coupled with a semi-infinite exterior field at the baffled opening, J. Acoust. Soc. Am., 140, 3675-3690 (2016)
[12] Shi, D.; Liu, G.; Zhang, H.; Ren, W.; Wang, Q., A three-dimensional modeling method for the trapezoidal cavity and multi-coupled cavity with various impedance boundary conditions, Appl. Acoust., 154, 213-225 (2019)
[13] Shi, S.; Liu, K.; Xiao, B.; Jin, G.; Liu, Z., Forced acoustic analysis and energy distribution for a theoretical model of coupled rooms with a transparent opening, J. Sound Vib., 462, Article 114948 pp. (2019)
[14] Bouillard, P.; Lacroix, V.; De Bel, E., A wave-oriented meshless formulation for acoustical and vibro-acoustical applications, Wave Motion, 39, 295-305 (2004) · Zbl 1163.74321
[15] Williams, E. G., On Green’s functions for a cylindrical cavity, J. Acoust. Soc. Am., 102, 3300-3307 (1997)
[16] Hong, K.; Kim, J., Natural mode analysis of hollow and annular elliptical cylindrical cavities, J. Sound Vib., 183, 327-351 (1995) · Zbl 0982.76550
[17] Chen, I.; Chen, J.; Kuo, S.; Liang, M., A new method for true and spurious eigensolutions of arbitrary cavities using the combined Helmholtz exterior integral equation formulation method, J. Acoust. Soc. Am., 109, 982-998 (2001)
[18] Choi, H. G.; Yoo, S. W.; Jeong, J. D.; Lee, J. M., Acoustic characteristics of annular cavities with locally non-uniform media, J. Sound Vib., 266, 967-980 (2003)
[19] Shao, W.; Mechefske, C. K., Acoustic analysis of a finite cylindrical duct based on Green’s functions, J. Sound Vib., 287, 979-988 (2005)
[20] Lee, W. M., Natural mode analysis of an acoustic cavity with multiple elliptical boundaries by using the collocation multipole method, J. Sound Vib., 330, 4915-4929 (2011)
[21] Zhou, D.; Au, F. T.K.; Cheung, Y. K.; Lo, S. H., Three-dimensional vibration analysis of circular and annular plates via the Chebyshev-Ritz method, Int. J. Solids Struct., 40, 3089-3105 (2003) · Zbl 1038.74568
[22] Qu, Y.; Meng, G., Dynamic analysis of composite laminated and sandwich hollow bodies of revolution based on three-dimensional elasticity theory, Compos. Struct., 112, 378-396 (2014)
[23] Su, Z.; Jin, G.; Ye, T., Three-dimensional vibration analysis of thick functionally graded conical, cylindrical shell and annular plate structures with arbitrary elastic restraints, Compos. Struct., 118, 432-447 (2014)
[24] Ye, T. G.; Jin, G. Y.; Shi, S. X.; Ma, X. L., Three-dimensional free vibration analysis of thick cylindrical shells with general end conditions and resting on elastic foundations, Int. J. Mech. Sci., 84, 120-137 (2014)
[25] Qin, B.; Wang, Q. S.; Zhong, R.; Zhao, X.; Shuai, C. J., A three-dimensional solution for free vibration of FGP-GPLRC cylindrical shells resting on elastic foundations: A comparative and parametric study, Int. J. Mech. Sci., 187, Article 105896 pp. (2020)
[26] Ma, S.; Zhao, Z.; Wang, X., Mesh-based digital image correlation method using higher order isoparametric elements, J. Strain Anal. Eng. Des., 47, 163-175 (2012)
[27] Fantuzzi, N., New insights into the strong formulation finite element method for solving elastostatic and elastodynamic problems, Curved Layered Struct., 1 (2014)
[28] Fantuzzi, N.; Leonetti, L.; Trovalusci, P.; Tornabene, F., Some novel numerical applications of cosserat continua, Int. J. Comput. Methods, 15, Article 1850054 pp. (2018) · Zbl 1404.74031
[29] Guan, X. L.; Tang, J. Y.; Wang, Q. S.; Shuai, C. J., Application of the differential quadrature finite element method to free vibration of elastically restrained plate with irregular geometries, Eng. Anal. Bound. Elem., 90, 1-16 (2018) · Zbl 1403.74105
[30] Yuan, Y.; Li, H.; Parker, R. G.; Guo, Y.; Wang, D.; Li, W., A unified semi-analytical method for free in-plane and out-of-plane vibrations of arbitrarily shaped plates with clamped edges, J. Sound Vib., 485, Article 115573 pp. (2020)
[31] Xie, X.; Zheng, H.; Qu, Y. G., A variational formulation for vibro-acoustic analysis of a panel backed by an irregularly-bounded cavity, J. Sound Vib., 373, 147-163 (2016)
[32] Chen, Y.; Jin, G.; Zhu, M.; Liu, Z.; Du, J.; Li, W. L., Vibration behaviors of a box-type structure built up by plates and energy transmission through the structure, J. Sound Vib., 331, 849-867 (2012)
[33] Du, J.; Li, W. L.; Liu, Z.; Yang, T.; Jin, G., Free vibration of two elastically coupled rectangular plates with uniform elastic boundary restraints, J. Sound Vib., 330, 788-804 (2011)
[34] Li, Z.; Zhong, R.; Wang, Q. S.; Qin, B.; Yu, H. L., The thermal vibration characteristics of the functionally graded porous stepped cylindrical shell by using characteristic orthogonal polynomials, Int. J. Mech. Sci., 182, Article 105779 pp. (2020)
[35] Xu, H.; Li, W. L., Dynamic behavior of multi-span bridges under moving loads with focusing on the effect of the coupling conditions between spans, J. Sound Vib., 312, 736-753 (2008)
[36] Pierce, A. D., Acoustics: An Introduction To Its Physical Principles and Applications (2019), Springer
[37] Qin, Z.; Chu, F.; Zu, J., Free vibrations of cylindrical shells with arbitrary boundary conditions: A comparison study, Int. J. Mech. Sci., 133, 91-99 (2017)
[38] Zhong, R.; Wang, Q. S.; Hu, S. W.; Qin, B.; Shuai, C. J., Spectral element modeling and experimental investigations on vibration behaviors of imperfect plate considering irregular hole and curved crack, J. Sound Vib. (2022)
[39] Shen, J.; Tang, T.; Wang, L.-L., Spectral Methods: Algorithms, Analysis and Applications (2011), Springer Science & Business Media · Zbl 1227.65117
[40] Schinzinger, R.; Laura, P. A., Conformal Mapping: Methods and Applications (2012), Courier Corporation
[41] Filiz, S.; Bediz, B.; Romero, L.; Ozdoganlar, O. B., Three dimensional dynamics of pretwisted beams: A spectral-tchebychev solution, J. Sound Vib., 333, 2823-2839 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.