×

Host vector dynamics of a nonlinear pine wilt disease model in deterministic and stochastic environments. (English) Zbl 1516.92118

Summary: In this study, we develop a vector-host transmission model with general incidence rates for the dynamics of pine wilt disease in deterministic and stochastic environments. The existence and local asymptotic stability of equilibria are investigated in the deterministic case. We show the required conditions for the ergodic stationary distribution and extinction of the model in the stochastic case by constructing appropriate Lyapunov functions. Furthermore, by solving the corresponding Fokker-Planck equation, we obtain exact expressions of probability density function around the quasi-equilibrium of the stochastic model. Finally, we employ comprehensive numerical simulations to support our results and compare deterministic and stochastic situations.

MSC:

92D30 Epidemiology
35Q84 Fokker-Planck equations
60G99 Stochastic processes
Full Text: DOI

References:

[1] Sun, H.; Zhou, Y.; Li, X.; Zhang, Y.; Wang, Y., Occurrence of major forest pests in 2020 and prediction of occurrence trend in 2021 in China, Forest Pest Dis., 40, 02, 45-48 (2021)
[2] Montagné-Huck, C.; Brunette, M., Economic analysis of natural forest disturbances: a century of research, J. Forest Econ., 32, 42-71 (2018)
[3] Yemshanov, D.; McKenney, D. W.; de Groot, P.; Haugen, D.; Sidders, D.; Joss, B., A bioeconomic approach to assess the impact of an alien invasive insect on timber supply and harvesting: a case study with Sirex noctilio in eastern Canada, Can. J. Forest Res., 39, 1, 154-168 (2009)
[4] Kim, S.-R.; Lee, W.-K.; Lim, C.-H.; Kim, M.; Kafatos, M. C.; Lee, S.-H.; Lee, S.-S., Hyperspectral analysis of pine wilt disease to determine an optimal detection index, Forests, 9, 3, 115 (2018)
[5] Khan, M.; Ali, K.; Bonyah, E.; Okosun, K.; Islam, S.; Khan, A., Mathematical modeling and stability analysis of pine wilt disease with optimal control, Sci. Rep., 7, 1, 1-19 (2017)
[6] Ozair, M.; Hussain, T.; Abro, K. A.; Jameel, S.; Awan, A. U., Role of pine wilt disease based on optimal control strategy at multiple scales: a case study of Korea, J. Biosci., 46, 4, 1-16 (2021)
[7] Romero, J.; Awan, A.; Hussain, T.; Ozair, M.; Aslam, A.; Ali, F.; Sharif, A., Analysis of a mathematical model for the pine wilt disease using a graph theoretic approach, Appl. Sci., 22, 189-204 (2020) · Zbl 1480.92213
[8] ur Rahman, G.; Shah, K.; Haq, F.; Ahmad, N., Host vector dynamics of pine wilt disease model with convex incidence rate, Chaos Solitons Fractals, 113, 31-39 (2018) · Zbl 1404.92200
[9] Awan, A. U.; Ozair, M.; Din, Q.; Hussain, T., Stability analysis of pine wilt disease model by periodic use of insecticides, J. Biol. Dyn., 10, 1, 506-524 (2016) · Zbl 1448.92274
[10] Lee, K. S., Stability analysis and optimal control strategy for prevention of pine wilt disease, Abstract and Applied Analysis, Vol. 2014 (2014), Hindawi · Zbl 1406.92588
[11] Chawla, S. R.; Ahmad, S.; Khan, A., Sensitivity and bifurcation analysis of pine wilt disease with harmonic mean type incidence rate, Physica Scripta, 97, 5, 055006 (2022)
[12] Ozair, M.; Hussain, T.; Shi, X.; Tasneem, F.; Gómez-Aguilar, J., Dynamical features of pine wilt disease model with asymptotic carrier, Eur. Phys. J. Plus, 135, 4, 366 (2020)
[13] Lee, K. S.; Lashari, A. A., Global stability of a host-vector model for pine wilt disease with nonlinear incidence rate, Abstract and Applied Analysis, Vol. 2014 (2014), Hindawi · Zbl 1470.92312
[14] Hussain, T.; Aslam, A.; Ozair, M.; Tasneem, F.; Gómez-Aguilar, J., Dynamical aspects of pine wilt disease and control measures, Chaos Solitons Fractals, 145, 110764 (2021) · Zbl 1498.92124
[15] Lee, K. S.; Kim, D., Global dynamics of a pine wilt disease transmission model with nonlinear incidence rates, Appl. Math. Model., 37, 6, 4561-4569 (2013) · Zbl 1270.91035
[16] Lu, C.; Sun, G.; Zhang, Y., Stationary distribution and extinction of a multi-stage HIV model with nonlinear stochastic perturbation, J. Appl. Math. Comput., 1-23 (2021)
[17] Leng, X.; Feng, T.; Meng, X., Stochastic inequalities and applications to dynamics analysis of a novel SIVS epidemic model with jumps, J. Inequal. Appl., 2017, 1, 1-25 (2017) · Zbl 1379.92062
[18] Qi, H.; Liu, L.; Meng, X., Dynamics of a nonautonomous stochastic sis epidemic model with double epidemic hypothesis, Complexity, 2017, Article 4861391 pp. (2017) · Zbl 1377.93152
[19] Cai, Y.; Kang, Y.; Wang, W., A stochastic sirs epidemic model with nonlinear incidence rate, Appl. Math. Comput., 305, 221-240 (2017) · Zbl 1411.92267
[20] Cai, Y.; Jiao, J.; Gui, Z.; Liu, Y.; Wang, W., Environmental variability in a stochastic epidemic model, Appl. Math. Comput., 329, 210-226 (2018) · Zbl 1427.34073
[21] Liu, Q.; Jiang, D.; Shi, N., Threshold behavior in a stochastic SIQR epidemic model with standard incidence and regime switching, Appl. Math. Comput., 316, 310-325 (2018) · Zbl 1426.92080
[22] Feng, T.; Qiu, Z., Global analysis of a stochastic tb model with vaccination and treatment, Discrete Continuous Dyn. Syst.-B, 24, 6, 2923 (2019) · Zbl 1418.92075
[23] Liu, Y.; Yu, P.; Chu, D.; Su, H., Stationary distribution of stochastic multi-group models with dispersal and telegraph noise, Nonlinear Anal. Hybrid Syst., 33, 93-103 (2019) · Zbl 1429.92133
[24] Yu, X.; Yuan, S.; Zhang, T., Asymptotic properties of stochastic nutrient-plankton food chain models with nutrient recycling, Nonlinear Anal. Hybrid Syst., 34, 209-225 (2019) · Zbl 1435.34056
[25] Agarwal, R. P.; Badshah, Q.; ur Rahman, G.; Islam, S., Optimal control & dynamical aspects of a stochastic pine wilt disease model, J. Franklin Inst., 356, 7, 3991-4025 (2019) · Zbl 1412.92270
[26] Togashi, K., Population density of Monochamus alternatus adults (Coleoptera: Cerambycidae) and incidence of pine wilt disease caused by Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae), Res. Popul. Ecol., 30, 2, 177-192 (1988)
[27] Zhao, Y.; Jiang, D., The threshold of a stochastic sirs epidemic model with saturated incidence, Appl. Math. Lett., 34, 90-93 (2014) · Zbl 1314.92174
[28] Cui, R., Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection sis epidemic model with saturated incidence rate, Discrete Continuous Dyn. Syst.-B, 26, 6, 2997 (2021) · Zbl 1471.35275
[29] Chong, N. S.; Tchuenche, J. M.; Smith, R. J., A mathematical model of avian influenza with half-saturated incidence, Theory Biosci., 133, 1, 23-38 (2014)
[30] Zhou, B.; Zhang, X.; Jiang, D., Dynamics and density function analysis of a stochastic SVI epidemic model with half saturated incidence rate, Chaos Solitons Fractals, 137, 109865 (2020) · Zbl 1489.92192
[31] Khan, M. A.; Ullah, S.; Khan, Y.; Farhan, M., Modeling and scientific computing for the transmission dynamics of avian influenza with half-saturated incidence, Int. J. Model. Simul. Sci. Comput., 11, 04, 2050035 (2020)
[32] PARks, P. C., A new proof of the Routh-Hurwitz stability criterion using the second method of Liapunov, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 58, 694-702 (1962), Cambridge University Press · Zbl 0111.28303
[33] May, R. M., Stability and complexity in model ecosystems, Stability and Complexity in Model Ecosystems (2019), Princeton University Press
[34] Mao, X.; Marion, G.; Renshaw, E., Environmental Brownian noise suppresses explosions in population dynamics, Stoch. Process. Appl., 97, 1, 95-110 (2002) · Zbl 1058.60046
[35] Khasminskii, R., Stochastic Stability of Differential Equations, Vol. 66 (2011), Springer Science & Business Media
[36] Zhou, B.; Jiang, D.; Dai, Y.; Hayat, T., Stationary distribution and density function expression for a stochastic SIQRS epidemic model with temporary immunity, Nonlinear Dyn., 105, 1, 931-955 (2021) · Zbl 1537.92154
[37] Shi, Z.; Zhang, X.; Jiang, D., Dynamics of an avian influenza model with half-saturated incidence, Appl. Math. Comput., 355, 399-416 (2019) · Zbl 1428.92117
[38] Ikeda, N.; Watanabe, S., A comparison theorem for solutions of stochastic differential equations and its applications, Osaka J. Math., 14, 3, 619-633 (1977) · Zbl 0376.60065
[39] Basak, G.; Bhattacharya, R., Stability in distribution for a class of singular diffusions, Ann. Probab., 20, 312-321 (1992) · Zbl 0749.60073
[40] Liu, H.; Yang, Q.; Jiang, D., The asymptotic behavior of stochastically perturbed DI SIR epidemic models with saturated incidences, Automatica, 48, 5, 820-825 (2012) · Zbl 1246.93117
[41] Peng, S.; Zhu, X., Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations, Stoch. Process. Appl., 116, 3, 370-380 (2006) · Zbl 1096.60026
[42] Gardiner, C. W., Handbook of Stochastic Methods, Vol. 3 (1985), Springer Berlin
[43] Roozen, H., An asymptotic solution to a two-dimensional exit problem arising in population dynamics, SIAM J. Appl. Math., 49, 6, 1793-1810 (1989) · Zbl 0697.92022
[44] Mao, X., Stochastic Differential Equations and Applications (2007), Elsevier · Zbl 1138.60005
[45] Higham, D. J., An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43, 3, 525-546 (2001) · Zbl 0979.65007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.