×

On \(g(x)\)-invo clean rings. (English) Zbl 1454.16041

Summary: An element in a ring \(R\) with identity is called invo-clean if it is the sum of an idempotent and an involution and \(R\) is called invoclean if every element of \(R\) is invo-clean. Let \(C(R)\) be the center of a ring \(R\) and \(g(x)\) be a fixed polynomial in \(C(R)[x]\). We introduce the new notion of \(g(x)\)-invo clean. \(R\) is called \(g(x)\)-invo if every element in \(R\) is a sum of an involution and a root of \(g(x)\). In this paper, we investigate many properties and examples of \(g(x)\)-invo clean rings. Moreover, we characterize invo-clean as \(g(x)\)-invo clean rings where \(g(x)=(x-a)(x-b),a,b\in C(R)\) and \(b-a\in Inv(R)\). Finally, some classes of \(g(x)\)-invo clean rings are discussed.

MSC:

16U60 Units, groups of units (associative rings and algebras)
16D60 Simple and semisimple modules, primitive rings and ideals in associative algebras
16S50 Endomorphism rings; matrix rings
Full Text: DOI

References:

[1] M.-S. Ahn and D. D. Anderson, Weakly clean rings and almost clean rings, Rocky Mountain J. Math. 36 (2006), no. 3, 783-798. https://doi.org/10.1216/rmjm/1181069429 · Zbl 1131.13301 · doi:10.1216/rmjm/1181069429
[2] M. M. Ali, Idealization and theorems of D. D. Anderson, Comm. Algebra 34 (2006), no. 12, 4479-4501. https://doi.org/10.1080/00927870600938837 · Zbl 1109.13010 · doi:10.1080/00927870600938837
[3] D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3-56. https://doi.org/10.1216/JCA-2009-1-1-3 · Zbl 1194.13002 · doi:10.1216/JCA-2009-1-1-3
[4] G. Borooah, A. J. Diesl, and T. J. Dorsey, Strongly clean matrix rings over commutative local rings, J. Pure Appl. Algebra 212 (2008), no. 1, 281-296. https://doi.org/10.1016/j.jpaa.2007.05.020 · Zbl 1162.16016 · doi:10.1016/j.jpaa.2007.05.020
[5] V. Camillo and J. J. Simon, The Nicholson-Varadarajan theorem on clean linear transformations, Glasg. Math. J. 44 (2002), no. 3, 365-369. https://doi.org/10.1017/S0017089502030021 · Zbl 1034.16033 · doi:10.1017/S0017089502030021
[6] V. P. Camillo and H.-P. Yu, Exchange rings, units and idempotents, Comm. Algebra 22 (1994), no. 12, 4737-4749. https://doi.org/10.1080/00927879408825098 · Zbl 0811.16002 · doi:10.1080/00927879408825098
[7] H. Chen, On uniquely clean rings, Comm. Algebra 39 (2011), no. 1, 189-198. https://doi.org/10.1080/00927870903451959 · Zbl 1251.16027 · doi:10.1080/00927870903451959
[8] M. Chhiti, N. Mahdou, and M. Tamekkante, Clean property in amalgamated algebras along an ideal, Hacet. J. Math. Stat. 44 (2015), no. 1, 41-49. · Zbl 1320.13020
[9] P. V. Danchev, Invo-clean unital rings, Commun. Korean Math. Soc. 32 (2017), no. 1, 19-27. https://doi.org/10.4134/CKMS.c160054 · Zbl 1357.16054 · doi:10.4134/CKMS.c160054
[10] P. V. Danchev, Corners of invo-clean unital rings, Pure Mathematical Sciences (2018), 27-31. · Zbl 1357.16054
[11] M. D’Anna, C. A. Finocchiaro, and M. Fontana, Amalgamated algebras along an ideal, in Commutative algebra and its applications, 155-172, Walter de Gruyter, Berlin, 2009. · Zbl 1177.13043
[12] M. D’Anna, C. A. Finocchiaro, and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (2010), no. 9, 1633-1641. https://doi.org/10.1016/j.jpaa.2009.12.008 · Zbl 1191.13006 · doi:10.1016/j.jpaa.2009.12.008
[13] L. Fan and X. Yang, On rings whose elements are the sum of a unit and a root of a fixed polynomial, Comm. Algebra 36 (2008), no. 1, 269-278. https://doi.org/10.1080/00927870701665461 · Zbl 1145.16010 · doi:10.1080/00927870701665461
[14] J. Han and W. K. Nicholson, Extensions of clean rings, Comm. Algebra 29 (2001), no. 6, 2589-2595. https://doi.org/10.1081/AGB-100002409 · Zbl 0989.16015 · doi:10.1081/AGB-100002409
[15] H. A. Khashan and A. H. Handam, g(x)-nil clean rings, Sci. Math. Jpn. 79 (2016), no. 2, 145-154. · Zbl 1359.16015
[16] A. Lambert and T. G. Lucas, Nagata’s principle of idealization in relation to module homomorphisms and conditional expectations, Kyungpook Math. J. 40 (2000), no. 2, 327-337. · Zbl 1042.13006
[17] W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269-278. https://doi.org/10.2307/1998510 · Zbl 0352.16006 · doi:10.1090/S0002-9947-1977-0439876-2
[18] W. K. Nicholson, Strongly clean rings and Fitting’s lemma, Comm. Algebra 27 (1999), no. 8, 3583-3592. https://doi.org/10.1080/00927879908826649 · Zbl 0946.16007 · doi:10.1080/00927879908826649
[19] W. K. Nicholson and Y. Zhou, Endomorphisms that are the sum of a unit and a root of a fixed polynomial, Canad. Math. Bull. 49 (2006), no. 2, 265-269. https://doi.org/10.4153/CMB-2006-027-6 · Zbl 1112.16029 · doi:10.4153/CMB-2006-027-6
[20] Z. Wang and J. Chen, A note on clean rings, Algebra Colloq. 14 (2007), no. 3, 537-540. https://doi.org/10.1142/S1005386707000491 · Zbl 1120.16030 · doi:10.1142/S1005386707000491
[21] G. Xiao and W. Tong, n-clean rings and weakly unit stable range rings, Comm. Algebra 33 (2005), no. 5, 1501-1517. https://doi.org/10.1081/AGB-200060531 · Zbl 1080.16027 · doi:10.1081/AGB-200060531
[22] G. Xiao and W. Tong, n-clean rings, Algebra Colloq. 13 (2006), no. 4, 599-606. https://doi.org/10.1081/AGB-200060531 · Zbl 1118.16024 · doi:10.1142/S1005386706000538
[23] Y. Ye, Semiclean rings, Comm. Algebra 31 (2003), no. 11, 5609-5625. https://doi.org/10.1081/AGB-120023977 · Zbl 1043.16015 · doi:10.1081/AGB-120023977
[24] Z. · Zbl 1142.16012 · doi:10.1017/S1446788700036909
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.