×

An application of Hayashi’s inequality in numerical integration. (English) Zbl 07919415

MSC:

26D15 Inequalities for sums, series and integrals
26D10 Inequalities involving derivatives and differential and integral operators
41A55 Approximate quadratures
65D30 Numerical integration

References:

[1] M. W. Alomari and S. S. Dragomir, Various error estimations for several Newton-Cotes quadrature formulae in terms of at most first derivative and applications in numerical integration, Jordan J. Math. Stat. 7 (2014), no. 2, 89-108. · Zbl 1304.26016
[2] S. S. Dragomir, P. Cerone, and J. Roumeliotis, A new generalization of Ostrowski integral inequality for mappings whose derivatives are bounded and applications in numerical integration and for special means, Appl. Math. Lett. 13 (2000), no. 1, 19-25. · Zbl 0946.26013
[3] N. Ujević, A generalization of Ostrowski’s inequality and applications in numerical integration, Appl. Math. Lett. 17 (2004), 133-137. · Zbl 1057.26023
[4] M. W. Alomari and M. K. Bakula, An application of Hayashias inequality for differentiable functions, Mathematics 10 (2022), no. 6, 907.
[5] M. W. Alomari, C. Chesneau, V. Leiva, and C. M. Barreiro, Improvement of some Hayashi-Ostrowski type inequalities with applications in a probability setting, Mathematics 10 (2022), no. 13, 2316.
[6] R. P. Agarwal and S. S. Dragomir, An application of Hayashi’s inequality for differentiable functions, Comput. Math. Appl. 32 (1996), no. 6, 95-99. · Zbl 0874.26017
[7] M. W. Alomari, A companion of Ostrowski’s inequality for mappings whose first derivatives are bounded and applications in numerical integration, Kragujevac J. Math. 36 (2012), 77-82. · Zbl 1289.26037
[8] M. W. Alomari, New sharp inequalities of Ostrowski and generalized trapezoid type for the Riemann-Stieltjes integrals and applications, Ukrainian Math. J. 65 (2013), no. 7, 895-916.
[9] A. Hazaymeh, R. Saadeh, R. Hatamleh, M. W. Alomari, and A. Qazza, A perturbed Milne’s quadrature rule for n-times differentiable functions with Lp-error estimates, Axioms 12 (2023), no. 9, 803.
[10] M. W. Alomari, A companion of Dragomiras generalization of Ostrowski’s inequality and applications in numerical integration, Ukrainian Math. J. 64 (2012), no. 4, 435-450. · Zbl 1257.26016
[11] M. W. Alomari, A companion of the generalized trapezoid inequality and applications, J. Math. Appl. 36 (2013), 5-15. · Zbl 1382.26019
[12] P. Cerone, S. S. Dragomir, and C. E. M. Pearce, A generalized trapezoid inequality for functions of bounded variation, Turkish J. Math. 24 (2000), 147-163. · Zbl 0974.26011
[13] P. Cerone, S. S. Dragomir, and J. Roumeliotis, An inequality of Ostrowski-Griiss type for twice differentiable mappings and applications in numerical integration, RGMIA Research Report Collection 1 (1998), no. 2, 59-66.
[14] S. S. Dragomir and S. Wang, An inequality of Ostrowski-Grüss’ type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Comput. Math. Appl. 33 (1997), no. 11, 15-20. · Zbl 0880.41025
[15] R. Saadeh, M. Abu-Ghuwaleh, A. Qazza, and E. Kuffi, A fundamental criteria to establish general formulas of integrals, J. Appl. Math. Comput. 2022 (2022), 1-16. · Zbl 1517.26003
[16] H. Gauchman, Some integral inequalities involving Tayloras remainder, I, J. Inequal. Pure Appl. Math. 3 (2002), no. 2, 1-9. · Zbl 1006.26016
[17] A. Guessab and G. Schmeisser, Sharp integral inequalities of the Hermite-Hadamard type, J. Approx. Theory 115 (2002), 260-288. · Zbl 1012.26013
[18] R. Hatamleh, On the form of correlation function for a class of nonstationary field with a zero spectrum, Rocky Mountain J. Math. 33 (2003), no. 1, 159-173. · Zbl 1171.60346
[19] R. Hatamleh and V. A. Zolotarev, Triangular models of commutative systems of linear operators close to unitary operators, Ukrainian Math. J. 68 (2016), 791-811. · Zbl 1498.47029
[20] A. Hazaymeh, A. Qazza, R. Hatamleh, M. W. Alomari, and R. Saadeh, On further refinements of numerical radius inequalities, Axioms 12 (2023), 807.
[21] L. Hawawsheh, A. Qazza, R. Saadeh, A. Zraiqat, and I. M. Batiha, Lp-mapping properties of a class of spherical integral operators, Axioms 12 (2023), 802.
[22] T. Qawasmeh, A. Qazza, R. Hatamleh, M. W. Alomari, and R. Saadeh, Further accurate numerical radius inequalities, Axioms 12 (2023), 801.
[23] M. Matić, J. Pečarić, and N. Ujević, Improvement and further generalization of inequalities of Ostrowski-Grüss type, Comput. Math. Appl. 39 (2000), 161-175. · Zbl 0952.26013
[24] N. Ujević, New bounds for the first inequality of Ostrowski-Grüss type and applications, Comput. Math. Appl. 46 (2003), 421-427. · Zbl 1052.26021
[25] S. S. Dragomir and T. M. Rassias, Ostrowski Type Inequalities and Applications in Numerical Integration, 1st Ed., Springer, Dordrecht, 2002, DOI: https://doi.org/10.1007/978-94-017-2519-4. · Zbl 0992.26002
[26] P. Cerone and S. S. Dragomir, Mathematical Inequalities, A Perspective, 1st Ed., CRC Press, Boca Raton, 2010.
[27] A. Qazza and R. Hatamleh, The existence of a solution for semi-linear abstract differential equations with infinite b-chains of the characteristic sheaf, Int. J. Appl. Math. Comput. Sci. 31 (2018), no. 5, 611-620.
[28] M. Abu-Ghuwaleh, R. Saadeh, and A. Qazza, General master theorems of integrals with applications, Mathematics 10 (2022), 3547.
[29] G. A. Anastassiou, Advanced Inequalities, Series on Concrete and Applicable Mathematics, vol. 11, World Scientific Publishing, Singapore, 2010, DOI: https://doi.org/10.1142/7847.
[30] N. Irshad, A. R. Khan, F. Mehmood, and J. Pečarić, New Perspectives on the Theory of Inequalities for Integral and Sum, 1st Ed., Dordrecht, Birkhäuser, Cham, 2022, DOI: https://doi.org/10.1007/978-3-030-90563-7. · Zbl 1487.26001
[31] D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993. · Zbl 0771.26009
[32] P. K. Kythe and M. R. Schäferkotter, Handbook of Computational Methods for Integration, Chapman & Hall/CRC, London, 2004.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.